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Motivation

0 Complementarity-based equilibrium models:

Holz, F., von Hirschhausen, C., & Kemfert, C. (2008). A strategic model of
European gas supply (GASMOD). Energy Economics, 30(3), 766-788.

Lise, W., & Hobbs, B. F. (2008). Future evolution of the liberalised European gas
market: Simulation results with a dynamic model. Energy, 33(7), 989-1004.

Gabriel S.A., Rosendahl, K.E., Egging, R., Avetisyan H., Siddiqui S., (2012).
Cartelization in Gas Markets: Studying the Potential for a ‘Gas OPEC’. Energy
Economics, 34(1), 137-152.

o Rolling optimization:

Devine, M. T., Gleeson, J. P., Kinsella, J., Ramsey, D. M., (2014). A Rolling
Optimisation Model of the UK Natural Gas Market. Networks and Spatial
Economics, 1-36.

Tuohy, A., Meibom, P., Denny, E., & O'Malley, M. (2009). Unit commitment for
systems with significant wind penetration. Power Systems, IEEE Transactions
on, 24(2), 592-601.

1 Combined rolling horizon and CBEM not seen before

0 Learning algorithms not seen in energy models



Model: rolling horizon of stochastic demand tree
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Single optimisation/equilibrium model
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Model: stochastic program

Second stage/hypothetical decisions
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Model: multi-player model 8

1 Gas producers

choose sales, production, injection/extraction and flows
through pipeline

so as to maximize their sales less

m production costs

[ storage costs

m pipeline costs

= cost of adjustments/ recourse costs

subject to:
m production constraints

m storage constraints
m adjustment constraints



Model: producer’s objective function 9

r+H—1
max > Z DtDAYst{Esm !r.fmsafespmn
SalespnztrﬁprOdpnztr .flmﬂsp:f;};o in'jp?ntr “Ttrpmtr 171 Expected
—C‘}iiﬁw“m( rods, .) - | sales less
d 15t ‘g s COSt
T Z REG atr)fzou" ;a??;"o —C ;rg;‘fge(znjpmt-r' Ih’pmtr)] }
QE4 J =
— Dy DAY Sy | RUES prod?@F_ |+ ROZprod®"
t=rL L D=y pmr P pm(t=r)r pmr P pm(t=r)r
+ RU?e3gq]es *adﬂ + ROsalessale
pmr m(t=r)r pmr (t r)r
.adj —|— .
+ RUp injot_ . + ROpZ injomi_ . Adjustment
t Ladj+ t ot adj—
+ RU ;cn;r‘l’t? pnﬁ(t:r]r + RO;?:;?’ pnjz{t:r)-r COStS
1 dj+,prod I dj—.,prod
- Z (ngafwﬂm ngajt f,m + ROgai“Sffoz ;a{t f;o ))
asA(p
1 o SS 7
— Dy 11 DAY Si—p i1 E(ry | RUB prod, 02
d
+ ROg;ﬁr pr odpm r 1)
I S5+ 1 S5—.s
+ RU ;;;;fssafe pm(t=r+1)r + RO;;? a{ES m(t=r-+1)r an Stage
S5+, S5
+ RUpir P2 4137 + RO M 3r+1 ) — | recourse
+ S54,s t SS—.,S
+ RU ;T:T‘thm{t r+1)r + Rosmr?“ ' pm(t:r—l—'l)r costs
ows 55+, d ows d
+ Y (RU™ flows, o700 + ROJI™ flowsS 7o)
acA(p)




Model: multi-player model 10

o Pipeline system operator:
choose pipeline flows between nodes/markets

so as to maximize their sales less
m pipeline flows costs
= cost of adjustments/ recourse costs

subject to:
m pipeline constraints
m adjustment constraints

7 Market clearing conditions:
Total sales = demand
Amount of gas flowing through pipelines is balanced



Model: multi-player model 11

Pipeline system operator’s objective function:
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Mixed Complementarity-Based Equilibrium Model

o Given a function F: R™ - R™, and lower and upper
boundsl € {RU {—o0}}", u € {R U {co}}".

0 The mixed complementarity problem is to find x €
R"™ such that one of the following holds for each i €
{1,..,n}:

F;(x)=0and l; < x; < u;,

F;(x) > 0and x; =,

F;(x) < 0and x; = u;.

See: Gabriel, S. A., et al. Complementarity modeling in energy markets. Vol. 180. Springer, 2012.

o For each roll of this problem:

KKT optimality conditions for producers)
F(x) = KKT optimality conditions for TSO
Market clearing conditions

12



Model

1 Update rules:

Storage: injections and extractions from previous roll used
to update amount of gas in storage

Demand horizon rolls forward one period

Production capacities reduced by amount produced in
previous roll

Learning algorithms

0 Data: three-node toy model
Node 1: New Jersey, New York and Pennsylvania
Node 2: lllinois, Indiana, Michigan, Ohio, Wisconsin

Node 3: Delaware, District of Columbia, Florida, Georgia,

Maryland, North Carolina, South Carolina, Virginia, West
Virginia

13



Results

01 Stressed demand in time 7

0 Learning algorithm
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Base case(no stress on demand)
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Stressed demand: no foresight
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Stressed demand: one period ahead foresight
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Stressed demand: three periods ahead foresight
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Stressed demand: perfect foresight
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Benefits of rolling horizon: stressed demand in roll 7 20

200

150

100

50

o . . | | N l |
Q1 Q2 Q3 I Qg Q6 Q7 [
Net injections
-£o [ Base case
(KCM\day) °

-100

-150

-200

-250

-300



Benefits of rolling horizon: stressed demand in roll 7 21
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Benefits of rolling horizon: stressed demand in roll 7 22
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Benefits of rolling horizon: stressed demand in roll 7 23
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Benefits of rolling horizon: stressed demand in roll 7 24
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Benefits of rolling horizon: stressed demand in roll 7 25
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Learning algorithms 26

o Allow models to incorporate changing risk
preferences and probabilities over time

0 Example:
After each roll check:

IF First-Stage decisions for Sales over-estimate for
actual demand

m Then increase recourse cost associated over-estimating
demand/production

ELSE IF First-Stage decisions for Sales under-
estimate actual demand

m Then increase recourse cost associated under-estimating
demand/production

o Other algorithms based on profits



Endogenous uncertainty 27
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Other projects 28

1 Renewable Energy Feed-In Tariffs

Farrell, N., Devine, M.T., Lee, W.T., Gleeson, J.P., Lyons,
S., Specifying an Efficient Renewable Energy Feed-in
Tariff, MPRA Working Paper No. 49777, 2013 and under
review.

Devine, M.T., Farrell, N., Lee, W.T., Managing investor and

consumer exposure to electricity market price risks through
Feed-in Tariff design. Under review.

o Simulation model of shipping process with Rusal
Aughinish

Cimpeanu, R., Devine, M.T, Tocher, D., Clune, L.,
Development and optimization of a Port Terminal Loader
Model at RUSAL Aughinish. Accepted to Simulation
Modelling, Practise and Theory



Summary and conclusions 29

o Introduced rolling horizon mixed complementarity-
based equilibrium model of natural gas market

Multi-player model
Repeated game
Stochastic program

o Described the benefits of rolling horizon in the
situation of unforeseen stressed demand

1 Examined the effects of a learning algorithm on a
natural gas market model

o Rolling horizons and learning can add realism to gas
market model models
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mel.devine@ul.ie
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