Value of Flexible Resources in Wind-Integrated Markets: A Stochastic Equilibrium Analysis

Jalal Kazempour, Venkat Prava, Benjamin F. Hobbs

October 2014

Stochastic Production: Wind Power

Day Ahead Wind Forecast vs. Real Time Wind Generation in MISO

Motivation

- Large penetration of stochastic generation leads to
 - Huge deviations in net load from day-ahead to real-time
 - Increased needs for reserves
- Uncertainty makes scheduling challenging (wrong unit commitment decisions)
- Flexible resources can cope with load deviations in real time
 - Peak units (CCGT)
 - Demand response (slow/fast), Storage
 - Virtual bidding
- New solution approach is needed
 - Stochastic modeling instead of deterministic

Research Questions

- What is the cost of uncertainty in generation?
- What is the value of flexible resources?
- What is the value of virtual bidding?

Uncertainty \uparrow (stochastic production \uparrow) Flexibility $\downarrow \Rightarrow$ Balancing costs \uparrow

Problem Statement (Two-stage Settlement – 1 Day Horizon)

Wind Scenario Set: S^{DA} ={s₁,..., s_n} (Based on available forecasted data in day-ahead) Wind Scenario Set: S^{RT} ={w₁,..., w_m} (Based on available forecasted data in real-time)

• For the sake of simplicity, a single DA scenario (deterministic) is assumed here!

Problem Statement (Two-stage Settlement – 1 Day Horizon)

SID: Scenario-<u>independent</u> decisions **SDD**: Scenario-<u>dependent</u> decisions

- Slow gen commitment: SID (*u*)
- Fast gen commitment SDD (*u*)
- Gen energy: SDD (*p*^{DA})
- Slow DRs: SID (*d*^{DA})
- Fast DRs: SDD (*d*^{DA})
- Virtual arbitrager: SID (v^{DA})

- Slow generators: (*u*: fixed,*p*^{*RT*}: SDD)
- Fast generators: (*u*: SDD , *p*^{*RT*}: SDD)
- Slow DRs: fixed
- Fast DRs: SDD (*d*^{RT})
- Virtual arbitrager: SID (*v*^{*RT*})

Problem Statement (Slow DR vs. Fast DR)

DR MW available: More in day-ahead market

Cost of DR: Higher in RT market

Problem Statement (Equilibrium Analysis)

Equilibrium Analysis:

- To gain insight into DA and RT market functioning
- To characterize interactions between two markets
- To evaluate the cost of uncertainty
- To evaluate the value of flexibility

Contributions

Three Equilibrium Models:

- 1) Multi-player equilibrium model:
 - Each player maximizes its expected profit in DA & RT markets, considering them simultaneously. Each player is price taking.

2) Total cost minimization:

- A single optimization problem whose objective function is to minimize the total expected cost of both DA and RT markets.
- 3) Two-stage settlement equilibrium model:
 - First DA market clears, then RT market
 - Each stage's market clearing problem is a cost minimization assuming all gen and DR bids truthfully; no self-scheduling
 - Virtual arbitragers consider both markets simultaneously and maximize profit.

Model 1: Multi-player Equilibrium Model

Each generator:

Max E(profit) By choosing DA and RT unit commitment and production levels S.t.: Generation constraints Relaxed unit commitment

Grid Operator

Max E(profit)By choosing network flowsS.t.: Balancing constraintsNetwork limits (in DA and RT)

Virtual arbitrager:

Max E(profit) By choosing DA and RT arbitrage quantities S.t.: V^{DA}+V^{RT}=0

Demand Response:

Max E(profit) By choosing DA and RT DR quantities S.t: DR quantity limits (DA and RT)

Market clearing:

- Energy balances DA (Price DA)
- Energy balances RT (Price RT)

Model 1: Multi-player Equilibrium Model

To be solved together!

Model 2: Total Cost Minimization

A single optimization problem:

```
Min [E(cost) DA] + [E(cost) RT]
```

Subject to:

- Production, ramping and start-up limits of generators (in DA and RT)
- Network limits (in DA and RT)
- DR limits (in DA and RT)
- V^{DA}+V^{RT}=0
- Energy balances DA
- Energy balances RT

Model 3: Two-stage Settlement Equilibrium Model

DA market clearing:

```
Min [E(cost) DA]
```

S.t.:

• Production, ramping& start-up limits of generators (in DA)

- Network limits (in DA)
- DR limits (in DA)
- Energy balances (in DA)

RT market clearing for each RT scenario:

```
Minimize [Cost in RT]
```

subject to:

- Production, ramping & start-up limits of generators (in RT)
- Network limits (in RT)
- DR limits (in RT)
- Energy balances (in RT)

Each virtual arbitrager:

Maximize expected profit subject to: V^{DA}+V^{RT}=0

Model 3: Two-stage Settlement Equilibrium Model To be solved together!

Modeling and Solution Approach

Unit commitment constraints are formulated as TRUC (Tight Relaxed Unit Commitment) problem (S. Kasina, S. Wogrin, B.F. Hobbs, JHU Working Paper, Nov. 2014.)

Multi-player equilibrium model is solved by solving the KKT conditions of all players simultaneously.

Two-stage settlement market clearing problems solved by solving the KKTs of DA market, RT market and arbitrager simultaneously (more realistic)

Analytical Results

Multi-player equilibrium model (Model 1) is equivalent to total cost minimization (Model 2) (proved: identical set of KKT conditions)

Without VB, Two-stage settlement market clearing is <u>NOT</u> equal to Models 1 and 2 (proved)

- 9-bus test system
 - Time period: 3 hours
- T1 is off peak and no DR
- T2 is peak and DR
- T3 is shoulder and DR
- Demand in DA is 779 MW
- Demand in RT is 794 MW
- A single wind farm in node 3

Example: Data

Each responsive load in the day-ahead market (slow DR) is able to increase/decrease at most 6% of its consumption during peak and shoulder hours.

Each responsive load in the real-time market (fast DR) is able to increase/decrease at most 2% of its consumption during peak and shoulder hours.

Example: Wind Forecast

Single DA scenario and 10 RT scenarios

Installed wind capacity is 12 % of average load

Example: Generator Characteristics

Generator	Туре	Min Production (MW)	Capacity (MW)	Ramp up (MW)	Ramp Down (MW)	Start Up cost (\$)	Initial Commitment	Initial Prod (MW)	Marginal Cost (\$/MWh)
1	Slow	300	300	300	300	90000	1	300	15.6
2	Slow	251	444	107	192	28714	1	251	26.3
3	Slow	70	150	70	80	19004	0	0	33.1
4	Fast	10	100	90	90	8700	0	0	55.3

Offer Price of Downward Slow DR is: 60 (\$/MWh) for 3% and 70 (\$/MWh) for next 3% and 1000 (\$/MWh) for remaining

Offer Price of Downward Fast DR is: 80 (\$/MWh) for 1% and 100 (\$/MWh) for next 1% and 1000 (\$/MWh) for remaining

Bid Price of Upward Slow/Fast DR is: 20 (\$/MWh) for 3/1% and 15(\$/MWh) for next 3/1%

Example

TEC: Total Expected Cost (\$) TELS: Total Expected Load Shed (MWh)

Model/Case	• No DR • 3 slow units • <u>No fast unit</u>	 No DR 3 slow and 1 fast units 	 With DR 3 slow and 1 fast units
Multi-player equilibrium (Models 1,2)	TEC = 71846 TELS = 0.3	TEC = 66711 TELS = 0	TEC = 63485 TELS = 0
Two-stage market clearing (Model 3) (No VB)	TEC = 97285 TELS = 10.9	TEC = 75050 TELS = 3.3	TEC = 63809 TELS = 0
Two-stage market clearing (Model 3) (with VB)	TEC = 71846 TELS = 0.3	TEC = 66711 TELS = 0	TEC = 63485 TELS = 0

Virtual Bidding (VB)

Can the virtual arbitrager always fix the inconsistencies?

Virtual Bidding (VB)

Can the virtual arbitrager always fix the inconsistencies?

Answer: No!

Virtual Bidding (VB): Counter Example

Generator	Туре	Min Production (MW)	Capacity (MW)	Ramp up (MW)	Ramp Down (MW)	Start Up cost (\$)	Initial Commitment	Initial Prod (MW)	Marginal Cost (\$/MWh)
1	Slow	1000	1000	1000	1000	0	1	1000	50
2	Slow	0	1000	500	500	10000	0	0	60
3	Fast	0	500	500	500	0	0	0	100

Only one hour

Demand in the DA market: 1000 MW Demand in the RT market: 1000 MW

Wind production based on the DA forecast (single scenario): 250 MW

Wind production based on the RT forecast (scenario 1): 0 MW Wind production based on the RT forecast (scenario 2): 500 MW

Counter Example

Model/Case	Total expected cost (\$)
Multi-player equilibrium (Models 1,2)	45000
Two-stage market clearing (Model 3) (No VB)	50000
Two-stage market clearing (Model 3) (with VB)	50000

Conclusions

- Formulated three different equilibrium models
- DR resources, flexible generators and virtual bidding lower expected total cost of generation

Future Research

- To include storage and load shifting as additional sources of flexibility
- Model 3 to be extended to allow self-scheduling by flexible generators
- To consider imperfect markets instead of competitive ones

Thanks for your attention!