

Agenda

- Theory: *Market power in constrained networks*
- Policy: The economics of network investment
- Math: A three-stage model for network investment and strategic generators
- Example: A toy model for illustration purposes
- Conclusion and outlook

Theory:

Market power in constrained networks

The theoretical background: Strategic behaviour in networks

In constrained networks, strategic generators may choose to congest lines to divide the market and earn monopoly profits

• Bushnell et al. (2000) illustrate this in a simple two-node example

- Cournot generators are able to earn extra rents by congesting the line and barring the other player from exporting to their market
- This is referred to as passive-aggressive equilibrium
- But even in this simple example, existence & uniqueness of an equilibrium depend on the line capacity

Numerical modelling: Capturing strategic behaviour is complicated

Applied/numerical modelling has largely abstracted from these effects due to the mathematical complexity

- Generators are frequently modelled as Cournot players (or using conjectural variations or supply function equilibria)
- But in most applied work, strategic players don't consider their impact on network congestion and resulting price differentials
- The problem becomes even more difficult when including power flow characteristics in networks
 cf. Neuhoff et al. (2005)
- ⇒ Hence, most numerical applied work underestimates the potential for gaming in (electricity) networks

Policy:

The economics of network investment

The benefits of network expansion

Network expansion can yield substantial benefits by improving efficiency and mitigating market power potential

- In a perfectly competitive market, you would invest up to the point where marginal cost of investment = marginal benefits (efficiency)
- But when generators are aware of their impact on grid congestion,
 this is quite difficult to compute
- It can be optimal to invest in a line which is not used in equilibrium
- This happens because the passive-aggressive equilibrium is no longer stable and generators revert to the Cournot equilibrium
- ⇒ With strategic generators present, network investment can yield benefits beyond efficiency gains by mitigating market power

The ugly math:

A three-stage model for network investment and strategic generators

Strategic generation in the power grid (I)

Modelling a strategic generator taking into account its impact on nodal prices is mathematically challenging

Strategic generator

Seeks to maximize profits

Decides on generation

Electricity market

(competitive & integrated, equivalent to ISO)

Determines optimal dispatch, price, load, power flows given the network

⇒ This yields a *Mathematical Program under Equilibrium Constraints* (MPEC, e.g., Gabriel and Leuthold, 2010; Ruiz and Conejo, 2009)

Strategic generation in the power grid (II)

Finding an equilibrium between strategic generators is even more challenging

Strategic generator

Seeks to maximize profits

Decides on generation

Strategic generator

Seeks to maximize profits

Decides on generation

Electricity market

(competitive & integrated, equivalent to ISO)

Determines optimal dispatch, price, load, power flows given the network

⇒ This yields an Equilibrium Problem under Equilibrium Constraints (EPEC, e.g., Ruiz, Conejo and Smeers, 2012; Pozo et al., 2013)

3

Investment in the power grid

A network planner decides on investment, balancing costs against efficiency gains and market power mitigation

Н

Network planner

Seeks to maximize aggregate welfare

Decides on grid upgrades

Solve welfare maximization constrained by reformulated lower-level equilibrium conditions

Strategic generator

Strategic generator

Each strategic generator faces a bilinear optimization problem under equilibrium constraints

Take KKT conditions and reformulate using disjunctive constraints

Electricity market (ISO)

Welfare maximization of spot market reformulated using strong duality

⇒ The resulting problem is a non-convex (bilinear)
Mixed-Integer Quadratically Constrained Quadratic Program

A numerical example:

A toy model for illustration purposes

4

A numerical application

A simple case study:

- A three node network
- Demand at n1, inverse demand function: p(q) = 10 q
- Generation at n2 and n3
- Marginal generation cost 0
- Initial line capacity as indicated

A numerical application – Market power cases

Potential Nash equilibria: benchmark & after expansion

Generation Price at *n1*

> The thin-line effect (cf. Borenstein et al., 2000): Line upgrades may be necessary to make Nash equilibria stable

against deviations, even if these lines are not utilized in equilibrium

A numerical application – Market power cases

Potential Nash equilibria: welfare effects

A numerical application – Anticipating market power

Proactive vs. reactive network investment

- Assume that a benevolent network planner invests as if all generators would act competitively, when in fact they behave strategically (*reactive* investment) (cf. Sauma and Oren, 2006)
- Solve for Nash equilibrium with "competitive" grid investment: In our test case: there exists no Nash equilibrium!

A philosophical question:

What is the interpretation of "no Nash equilibrium"...?

Conclusion and outlook

Conclusions and outlook

Theory and methodology:

- We develop a methodology to identify equilibria between strategic generators accounting for their effect on the network
- A network planner balances expansion costs against efficiency gains and market power effects
- There is a lot of ugly math & iterative algorithms to make this work

Policy:

- Network expansion can greatly mitigate market power potential
- Only focusing on congested lines can lead to sub-optimal decisions
- Failing to anticipate strategic behaviour can lead to funny effects

Thank you very much for your attention!

German Institute for Economic Research (DIW Berlin)
Deutsches Institut für Wirtschaftsforschung e.V.
Mohrenstraße 58, 10117 Berlin
www.diw.de/english

Daniel Huppmann, dhuppmann@diw.de Alexander Zerrahn, azerrahn@diw.de