Retail Electricity Price Savings from Compliance Flexibility in GHG Standards for Stationary Sources (forthcoming in *Energy Policy*)

Dallas Burtraw, Matt Woerman, and Anthony Paul

5th Annual Trans-Atlantic Infraday Conference Washington, DC November 11, 2011

Introduction

- EPA will soon regulate greenhouse gas (GHG) emissions at steam boilers under the Clean Air Act (CAA) using a performance standard
 - Flexible performance standard with fleet-wide averaging?
 - Or traditional, inflexible performance standard?

Preview of Results

 Flexible standard increases electricity prices by 1.3%

Traditional standard increases electricity prices by 3.3%

- Traditional standard leads to more retirement of existing coal-fired plants
- Flexible standard leads to more investment in efficiency at existing coal-fired plants
- Total cost of a flexible standard is 1/3 the cost of a traditional standard

Overview

- Background
- Haiku electricity market model
- Scenarios
- Results and analysis
- Conclusions

- Massachusetts v. EPA, 2007
 - Confirmed EPA authority to regulate GHG emissions under CAA
- EPA will regulate new and existing stationary sources with performance standards
 - First regulation will be for steam boilers and refineries
 - Final rule expected in 2012

- Electricity sector GHG emissions
 - 33% of US GHG emissions
 - 40% of US CO_2 emissions
 - Expected to account for 2/3 to 3/4 of economywide emission reductions over the next deacde under a cost-effective GHG policy
- Coal-fired power plants
 - -82.5% of electricity sector CO₂ emissions
 - 33.3% of total US CO₂ emissions

- EPA's advance notice of proposed rulemaking (2008)
 - Coal-fired plants can reduce CO₂ emissions by upgrading various systems to improve plant efficiency (reduce heat rate)
 - The coal-fired fleet-wide average heat rate could reasonably be reduced by up to 5%
 - Current average is 10,300 Btu/kWh, ranging from 9,000 to above 15,000 Btu/kWh

- A number of previous studies have examined the ability of coal plants to improve operating efficiency
 - Sargent & Lundy, 2009
 - DiPietro and Krulla, 2010
 - NETL, 2010
 - Linn et al., 2011

- Two regulatory approaches under CAA Section 111(d) (Richardson, Fraas, and Burtraw 2011)
 - Traditional, inflexible performance standards
 - Flexible performance standard with fleet-wide averaging

Haiku Electricity Market Model

air pollution policies
electricity market institutions
technology assumptions
macroeconomic assumptions

Haiku

Data

existing generators
fuel and resource supply
pollution controls
transmission grid
electricity consumption
efficiency opportunities

Model Outputs

electricity prices and demand
electricity generation and reserve
interregional electricity trade

- •generation capacity
- •pollution controls capacity
- •fuel consumption
- •emissions (NO₁, SO₂, CO₂, mercury)
- •emissions allowance prices
- •GECO prices

Time, Regions, and Model Plants

- Time
 - Simulation years out to 2035
 - 1 yr = 3 seasons * 4 times of day = 12 time blocks
- 21 Haiku Market Regions = 21 nodes on electricity grid
 - Energy balance in each region
 - Regions connected by transmission grid
 - Regulatory structure: cost-of-service or competitive
- Model Plants
 - Represent groups of electricity generators sharing technological similarities
 - Pre-existing generators, planned & endogenous construction

Haiku Regions

Haiku Coal Plant Efficiency

- Operating efficiency improvement
 - Schedule of opportunities (Sargent & Lundy 2009)
 - Estimate a linear supply curve for efficiency
 - Approximately 700 Btu/kWh improvement available at a cost ranging from 0 to about \$35/MW per Btu/kWh improvement
 - Width of supply curve grows at 1% annually
 - Opportunities available at a plant are inversely related to the plant's operating efficiency

Scenarios

- Two scenarios
 - Calibrated to achieve the same CO_2 emissions from the electricity sector, 5.4% below BL in 2020
 - Flexible performance standard
 - Traditional performance standard

Flexible Performance Standard

- By 2020, achieve 5% reduction in average coalfired heat rate from observed 2010 rate
- Generators receive and surrender GECOs (generation efficiency credit offset) for every unit of generation
- Benchmark GECO rate is 9,657 Btu/kWh in 2020
- Generators surrender GECOs at actual heat rate
- GECO price is denominated in \$/Btu
- Heat rate approach is roughly equivalent to using emission rates

Traditional Performance Standard

- Maximum heat rate of 10,300 Btu/kWh in 2020
- Coal-fired plants not meeting this standard must invest in efficiency improvements or retire

Electricity Prices

Year 2020 Values in 2008 dollars	Flexible Standard	Traditional Standard
<i>Change</i> in Elec. Price (\$/MWh)	1.16	2.84
	1.3%	3.3%

Price effect is much smaller for flexible standard than for traditional standard

Regional Electricity Prices

Year 2020 Values in 2008 \$/MWh	Flexible Standard	Traditional Standard
RGGI	-0.40	4.75
Rockies & West	2.69	3.22
Big 10 & Appalachia	-0.25	4.10
Southeast	-0.38	-0.41
Plains	5.03	4.53
Wholesale Competition	0.12	4.61
Cost of Service	1.79	1.75
National	1.16	2.84

• Price difference between flexible and traditional standards occurs mostly in competitive regions

Generation Mix

Year 2020	Flexible Standard	Traditional Standard
<i>Change</i> in Total Generation (BkWh)	-40	-74
	-0.9%	-1.7%
Coal	-114	-209
	-5.9%	-10.9%
Gas	79	132
	7.8%	13.1%

- Reduction in generation mirrors changes in electricity prices
- Most fuel switching occurs under traditional standard, second most in flexible standard

Capacity

Year 2020	Flexible Standard	Traditional Standard
Change in Total Capacity (GW)	-0.6	-3.2
	-0.1%	-0.3%
Coal	-5.5	-32.6
	-2.0%	-11.9%
Gas	6.2	29.7
	1.5%	7.0%

 Greatest coal retirement by far occurs under traditional standard

Capacity Retirements

Coal retirements vary by heat rate

•

- Most capacity
 is better off
 under the
 flexible
 standard
- Some capacity benefits from the traditional standard

Efficiency Investments

Year 2020 Values in 2008 dollars	Flexible Standard	Traditional Standard
Avg. Coal Plant Heat Rate (Btu/kWh)	9,657	9,914
Avg. Effic. Improvement (Btu/kWh)	525	268
	5.2%	2.6%
Efficiency Investments (M\$)	2,933	349

 Flexible standard leads to most efficient coal fleet and largest investment in efficiency improvements

Marginal Generation Costs

Year 2020 Values in 2008 dollars	Flexible Standard	Traditional Standard
GECO Price (\$/MMBtu)	26.4	
Cost of Coal (\$/MMBtu)	1.95	2.02
Cost of Gas (\$/MMBtu)	5.42	5.45

- GECO price provides the greatest incentive for efficiency investments
 - 13 times greater than the cost of coal in the flexible standard scenario

Cost Effectiveness

Year 2020 Values in 2008 dollars	Flexible Standard	Traditional Standard
<i>Change</i> in Total Cost (B\$/year)	1.4	4.9
Consumer Cost	1.9	7.0
Producer Cost	-0.4	-2.3
Cost to Government	-0.2	0.2
Change in Cost / MWh (\$/MWh)	1.9	5.8
	2.8%	8.4%

 Cost of flexible standard is about 1/3 the cost of the traditional standard

Conclusions

 Flexible standard increases electricity prices by 1.3%

Traditional standard increases electricity prices by 3.3%

- Traditional standard leads to more retirement of existing coal-fired plants
- Flexible standard leads to more investment in efficiency at existing coal-fired plants
- Total cost of a flexible standard is 1/3 the cost of a traditional standard

Conclusions

- EPA regulation
 - Final rule expected in 2012
 - Legal analysis indicates the agency has the authority to implement a flexible performance standard
 - Economic advantages of a flexible standard would be substantial relative to a traditional performance standard

Future Work

 Additional flexibility under flexible performance standard

- Cofiring with biomass or natural gas, etc.

- Subcategorization of plants
 - Variable benchmark rates based on observed heat rate, boiler characteristics, etc.

