

Efficient storage capacity in power systems with thermal and renewable generation

Transatlantic Infraday FERC November 10, 2011

> Bjarne Steffen Christoph Weber

Chair for Management Sciences and Energy Economics Prof. Dr. Christoph Weber

wind is a powerful source of energy...

Chair for Management Sciences and Energy Economics Prof. Dr. Christoph Weber

... but occasionally not

Integration of RES motivates the re-evaluation of storage

• High-pace transition of generation landscape

20% RES by 2020 (RES-directive 2001/77/EC)

35% RES by 2020 and 80% by 2050

(EEG-2012, § 2 Abs. 2)

- Integration of intermittent renewables being a challenge
 - Wind and PV with very low capacity credit
 - Availability of controllable thermal capacity not evident
- Electricity storage as natural complement really?
 - Extension of storage capacities vowed by politicians
 - Surge of pumped-hydro storage projects in Germany
 - However, only one option next to thermal "backup" plants

Efficient storage capacity to be determined

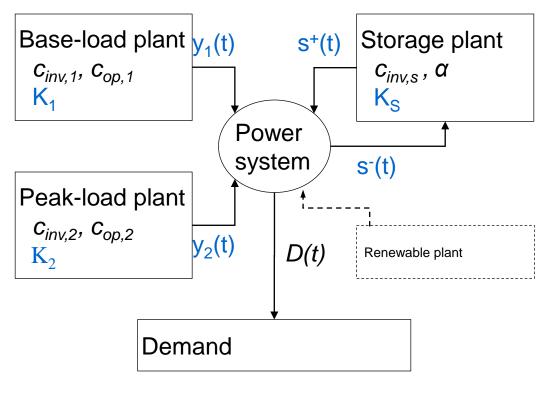
Table of contents

1. Background & motivation

2. Analytical model

3. Model application to Germany

4. Final remarks



Model builds on peak-load-pricing literature

- Goal: Analytical derivation of efficient storage capacity
 - Large-scale storage
 - Turbine/pumping power
 - Social optimum
- Theoretical literature
 - Two-period peak-load-pricing models: Jackson (1973), Gravelle (1976)
 - Optimizing individual plant's profit, e.g. Horsley and Wrobel (2002)
 - Efficient storage operation: Crampes and Moreaux (2010)
- Contribution
 - Efficient storage capacity in view of RES and controllable plants
 - Departure from two-period setup

Load is met by two thermal technologies, RES and storage

 $t \in [0;T]$ $D: [0;T] \to \mathbb{R}_+, t \mapsto D(t)$ $D_{max} = D(0)$

$$C_{inv,i} = c_{inv,i}K_i$$
$$C_{op,i} = c_{op,i}Q_i$$

 $c_{inv,1} > c_{inv,2}$ $c_{op,2} > c_{op,1}$

 αQ_s $\alpha > 1$

Given parameters Optimization variables UNIVERSITÄT

Chair for Management Sciences and Energy Economics Prof. Dr. Christoph Weber

Welfare optimum obtained by minimization of total costs

$$\min_{y_i(t),K_i,K_s} C\left(y_i(t),K_i,K_s\right) = \int_0^T \sum_i y_i(t) c_{op,i} \, dt + \sum_i K_i c_{inv,i} + K_s c_{inv,s}$$
(1a)

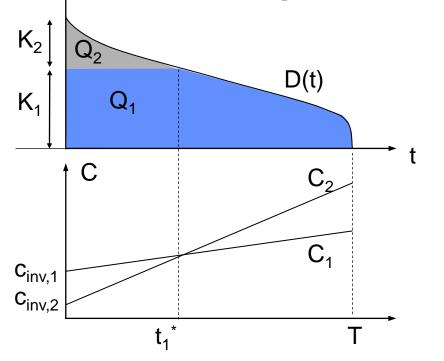
s.t. $K_i - y_i(t) \ge 0$ $\forall i, t$ (1b)

$$K_s - s^+(t) \ge 0 \qquad \forall t \qquad (1c)$$

$$K_s + s^-(t) \ge 0 \qquad \forall t \qquad (1d)$$

$$\int_{0}^{T} s^{+}(t) dt = -\alpha \int_{0}^{T} s^{-}(t) dt$$
 (1e)

$$\sum_{i} y_i(t) + s^+(t) + s^-(t) = D(t) \qquad \forall t \qquad (1f)$$

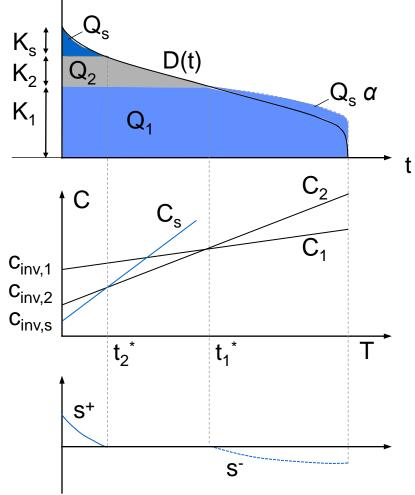

 $K_i, K_s, y_i(t), s^+(t), -s^-(t) \ge 0 \quad \forall i, t.$ (1g)

UNIVERSITÄT

Chair for Management Sciences and Energy Economics Prof. Dr. Christoph Weber

Step 0: No storage, no RES

$$Q_{2} = \int_{0}^{t_{1}} D(t)dt - t_{1}K_{1}$$
$$Q_{1} = Q_{E} - Q_{2}$$

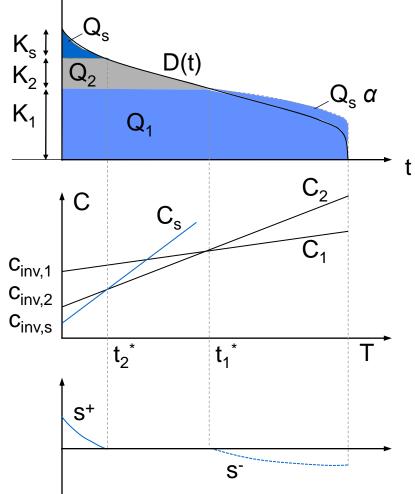


 $K_1^* = D(t_1^*),$ $K_2^* = D_{max} - D(t_1^*)$

UNIVERSITÄT DEUSSENURG

Step 1: Storage as peak-load plant ($c_{inv,s} < c_{inv,2}$), no RES yet

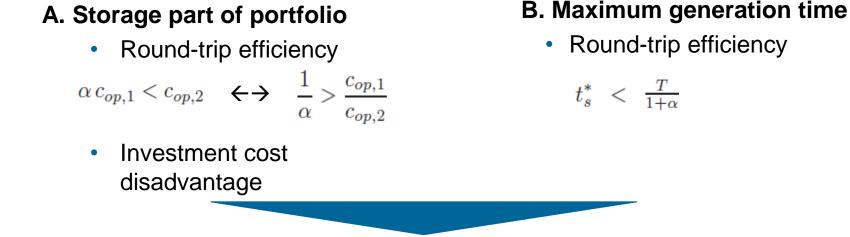
$$\begin{split} \min_{K_i, K_s} C(K_i, K_s) \\ &= \sum_i K_i c_{inv,i} + K_s c_{inv,s} + \sum_i Q_i c_{op,i} + Q_s \alpha c_{op,1} \\ \text{s.t.} \quad K_i, K_s \ge 0 \quad \forall i, \end{split}$$

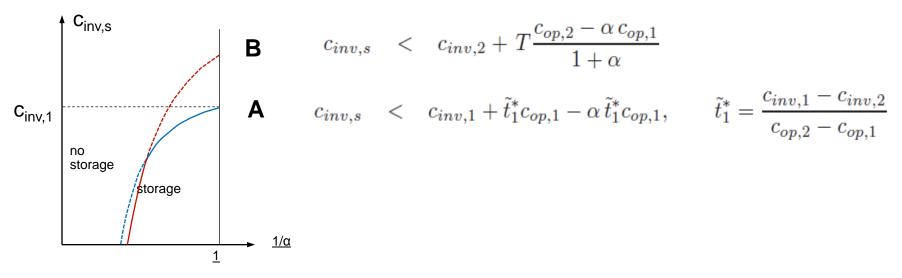

$$Q_{s} = \int_{0}^{t_{2}} D(t)dt - t_{2}(K_{1} + K_{2})$$
$$Q_{2} = \int_{0}^{t_{1}} D(t)dt - t_{1}K_{1} - Q_{s}$$
$$Q_{1} = Q_{E} - Q_{s} - Q_{2}$$

 $K_1 = D(t_1), \qquad K_2 = D(t_2) - D(t_1)$ $K_s = D_{max} - D(t_2)$

UNIVERSITÄT DEUISEBURG

Step 1: Storage as peak-load plant ($c_{inv,s} < c_{inv,2}$), no RES yet


\perp $t_2 \ge 0$
$t_2^* = \frac{c_{inv,2} - c_{inv,s}}{\alpha c_{op,1} - c_{op,2}}$
$\frac{\partial K_s^*}{\partial \alpha} < 0$
$\frac{\partial K_s^*}{\partial c_{op,2}} > 0$ $\frac{\partial K_s^*}{\partial c_{op,1}} < 0.$


 $c_{inv,2} - c_{inv,s} = t_2^* (\alpha c_{op,1} - c_{op,2})$

Chair for Management Sciences and Energy Economics Prof. Dr. Christoph Weber

Step 2: Constraints for mid-merit storage ($c_{inv,2} < c_{inv,s} < c_{inv,1}$)

UNIVERSITÄT

 ∂

д

Step 2: Solution for mid-merit storage ($c_{inv,2} < c_{inv,s} < c_{inv,1}$)

$$Q_{2} = \int_{0}^{t_{s}} D(t)dt - t_{S}(K_{1} + K_{s})$$

$$Q_{s} = \int_{0}^{t_{1}} D(t)dt - t_{1}K_{1} - Q_{2}$$

$$Q_{1} = Q_{E} - Q_{2} - Q_{s}$$

$$K_{1} = D(t_{1})$$

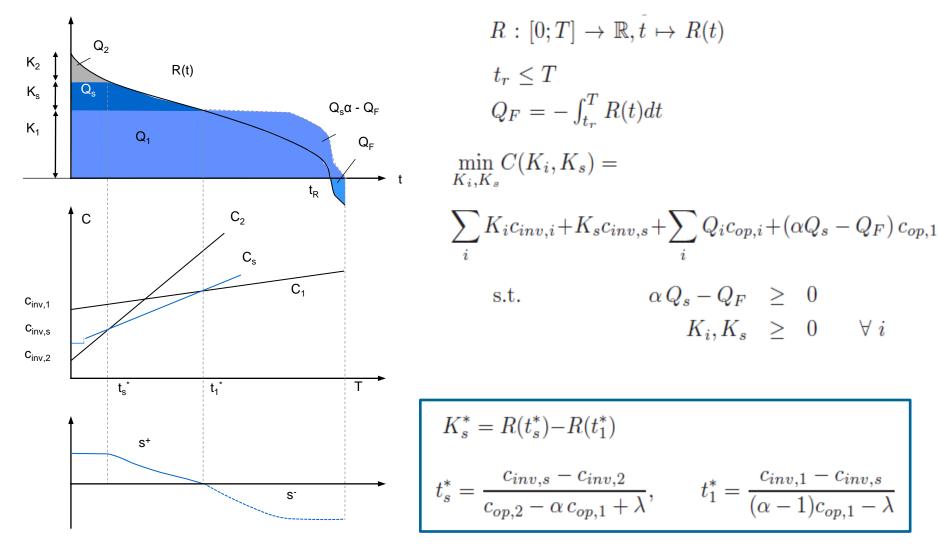
$$K_{s} = D(t_{s}) - D(t_{1})$$

$$K_{2} = D_{max} - D(t_{s})$$

$$\frac{C(t_{s}, t_{1})}{\partial t_{s}} \ge 0, \quad \bot \quad t_{s} \ge 0$$

$$\frac{C(t_{s}, t_{1})}{\partial t_{1}} \ge 0, \quad \bot \quad t_{1} \ge 0$$

$$\begin{split} K_{s}^{*} &= D(t_{s}^{*}) - D(\min\{t_{1}^{*}, t_{1}^{max}\}) \\ t_{s}^{*} &= \frac{c_{inv,s} - c_{inv,2}}{c_{op,2} - \alpha \, c_{op,1}} \\ t_{1}^{*} &= \frac{c_{inv,1} - c_{inv,s}}{(\alpha - 1) \, c_{op,1}} \\ t_{1}^{max} &= \frac{T}{1 + \alpha} \end{split}$$

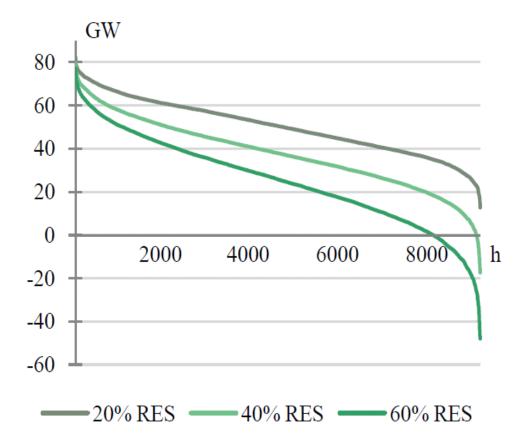

$$\begin{aligned} \frac{\partial K_s^*}{\partial c_{inv,s}} &< 0, & \frac{\partial K_s^*}{\partial \alpha} &< 0 \\ \frac{\partial K_s^*}{\partial c_{inv,2}} &> 0, & \frac{\partial K_s^*}{\partial c_{op,2}} &> 0 \\ \frac{\partial K_s^*}{\partial c_{inv,1}} &\geq 0, & \frac{\partial K_s^*}{\partial c_{op,1}} &< 0 \end{aligned}$$

UNIVERSITÄT

Chair for Management Sciences and Energy Economics Prof. Dr. Christoph Weber

Final step: Introducing renewables

Table of contents

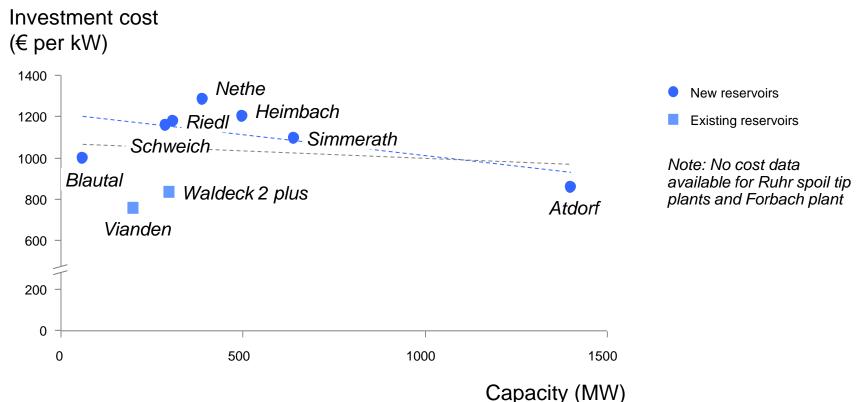

- 1. Background & motivation
- 2. Analytical model

3. Model application to Germany

4. Final remarks

High shares of RES generation cause steep residual LDC

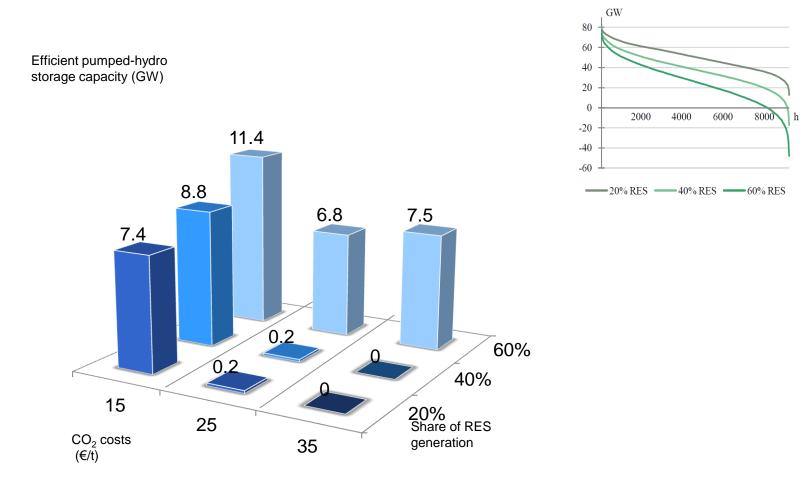
Five controllable generation technologies considered



Parameter	Unit	Lignite	Hard coal	CCGT	OCGT	PHS
Thermal efficiency	MWh_{el} / MWh_{th}	0.43	0.46	0.56	0.34	
Round-trip efficiency	MWh_{out} / MWh_{in}					0.80
Carbon emission rate	t CO ₂ / MWh _{el}	0.99	0.75	0.37	0.60	0
Technical lifetime	years	45	45	30	25	50
Total investment costs	€/kW	1934	1419	608	456	961
Fixed O&M, overhead	\in /kW a	43.26	36.06	13.97	9.69	9.61
Variable O&M, transport	\in /MWh _{el}	1.7	2.9	13.1	19.6	0

Fuel	\in /MWh _{th}
Lignite	4.28
Hard coal	9.94
Gas	21.90

Investment costs of German pumped-hydro projects



Model specification	Ν	coefficient	t-statistic
All projects	9	209	-1.94
New build projects only	7	318	-5.98
New build projects only, excluding Atdorf	6	142	63

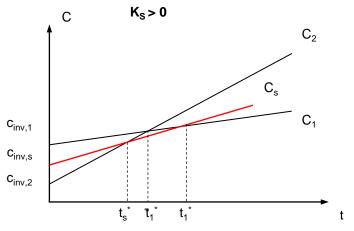
Chair for Management Sciences and Energy Economics Prof. Dr. Christoph Weber

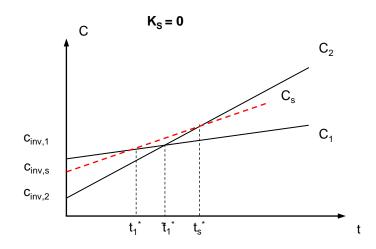
Result: Growing storage capacity with RES share – as long as CO₂ prices are not too high

Summary and conclusion

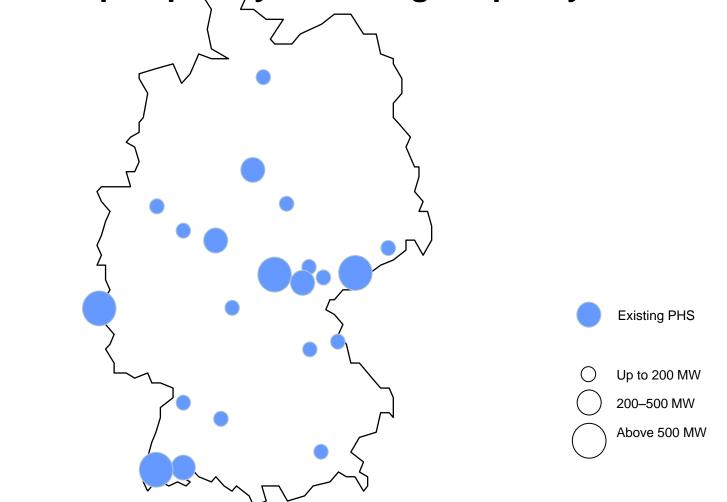
- Peak-load-pricing based on load duration curve provides unifying framework for storage efficiency evaluation in the presence of RES and controllable plants
 - Critical cost level for storage being part of the portfolio
 - Influence of central cost parameters on storage capacity
 - Role of RES: excess generation vs. shape of residual load duration curve
- Case study for Germany shows high dependency on CO2 costs
 - Efficient storage capacity 50% with higher RES generation, despite lower peak load
 - However, inefficient with CO2 costs of from € 25, except with RES share above 40%
 - Surge of German pumped-hydro projects coming too early?
- Trade-off between larger turbines and larger reservoirs still has to be evaluated
 - Load duration curve as basis has no information on cyclicality
 - Optimal reservoir capacity to be evaluated in a next step

Chair for Management Sciences and Energy Economics Prof. Dr. Christoph Weber


Thank you for your attention!



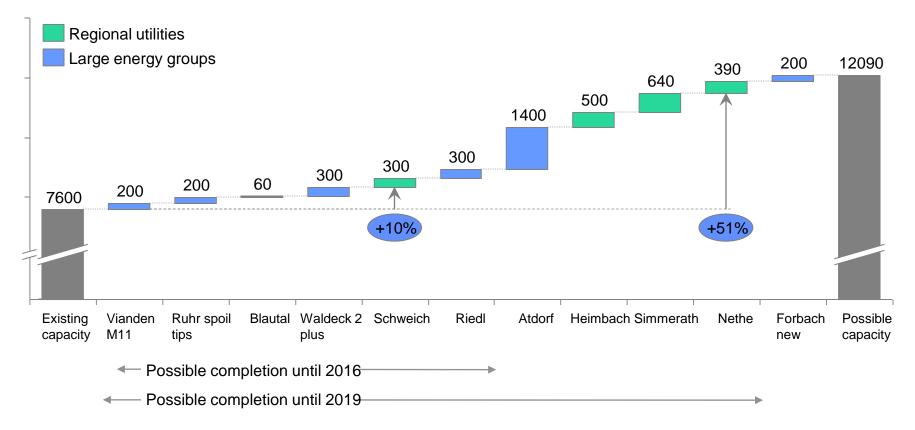
Condition for mid-merit storage being part of the portfolio



Chair for Management Sciences and Energy Economics Prof. Dr. Christoph Weber

German pumped-hydro storage capacity

UNIVERSITÄT DEUSSENURG Backup



German pumped-hydro storage capacity and new projects Nethe Hamm Waldeck 2+ Simmerath PHS project Heimbach **Existing PHS** Schweich Vianden M 11 Up to 200 MW 200-500 MW Blautal Riedl Forbach Above 500 MW Atdorf

German pumped-hydro storage projects until 2019

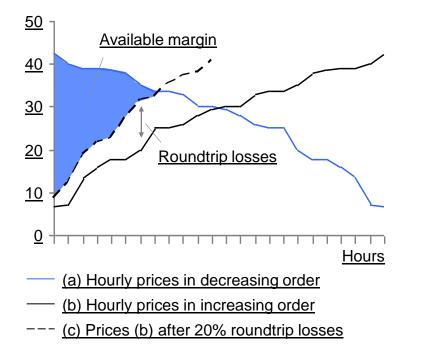
PHS turbine capacity (MW)

Parameters of German pumped-hydro storage projects

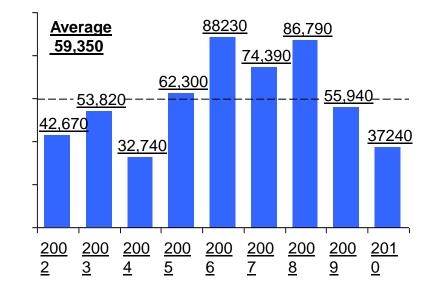
Plant project	State ^a	Head	Capacity	Costs	Planned
		(m)	(MW)	(€M)	$\operatorname{completion}$
Vianden M 11	(Lux.)	280	200	155	2013
Ruhr spoil tip plants	NW	50 - 100	$15/200^{b}$	n.a.	$2014/{ m n.a.}^{b}$
Blautal (Ulm)	$_{\rm BW}$	170	60	60	2015 - 2016
Waldeck 2 plus	HE	360	300	250	2016
Schweich (Trier)	RP	200	300	300 - 400	2015 - 2017
Riedl	BY	350	300	350	2018
Atdorf	$_{\rm BW}$	600	1400	1200	2019
Forbach	$_{\rm BW}$	320	200	n.a.	n.a.
Heimbach (Mainz)	RP	500	400 - 600	$500 - 700^{c}$	2019
$\operatorname{Simmerath}$	NW	240	640	700	2019
Nethe (Höxter)	NW	220	390	500+	2019

 a BW=Baden-Wuerttemberg, BY= Bavaria, HE= Hesse, Lux.= Luxembourg, NW= North Rhine-Westphalia, RP= Rhineland-Palatinate

^bPilot plant/all planned plants


 c Cost range of "comparable plants" as provided by project developer

Estimate of time spread arbitrage potential in German


Logic

Price duration curves EPEX Spot, 01/08/2010 €/MWh

Results 2002-2010

<u>Available margin from times spread arbitrage</u> €/MW per year

