

VALUE OF SHORT-RUN DEMAND RESPONSE FOR INTEGRATING WIND: UNIT COMMITMENT & GENERATION EXPANSION MODELING WITH PRICE RESPONSIVE LOAD

Cedric De Jonghe

Ph.D. Student, Energy Institute/Electa Branch, KU Leuven

Benjamin F. Hobbs

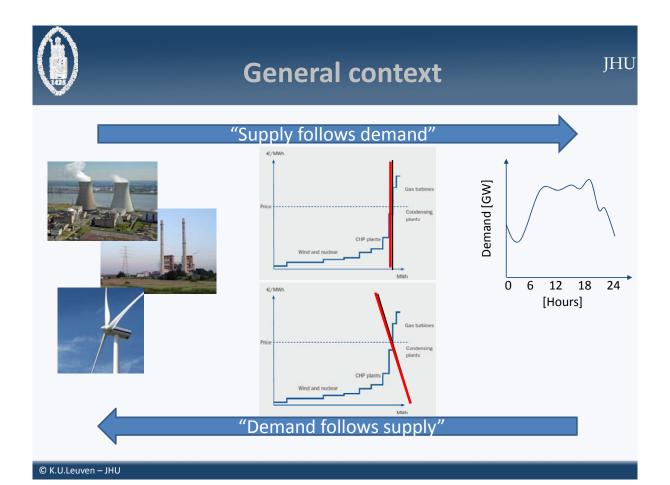
Schad Professor, Dept. Geography & Environmental Engineering Director, Environment, Energy, Sustainability & Health Institute The Johns Hopkins University

Chair, Market Surveillance Committee, California ISO

Ronnie Belmans

Professor, Energy Institute/Electa Branch, KU Leuven

Thanks to Electricity Policy Research Group of Cambridge University and NSF


© K.U.Leuven – JHU

Overview

THU

- Problem: Lack of demand response in operations & planning models
- Representing price responsive consumers
- Operations: Unit commitment
 - Effect of DR on dispatch
 - Effect of wind 'must take' requirements
 - » Neither economically nor environmentally desirable
- Investment: Capacity expansion
 - Effect of DR on optimal wind investment
 - Effect of X-price elasticity

JHU

What is the problem?

Unit commitment & generation investment models assume **fixed short-run loads**

They neglect opportunities for:

- improved dispatch & investment
- renewables integration

What do we need?

Models accounting for price responsive consumers We quantify:

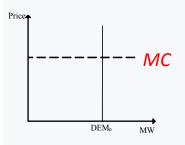
- changes in decisions
- efficiency benefits

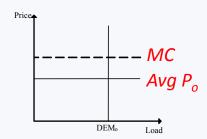
Overview

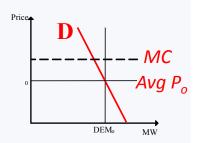
JHU

- Problem: Lack of demand response in operations & planning models
- Representing price responsive consumers
- · Operations: Unit commitment
 - Effect of DR on dispatch
 - Effect of wind 'must take' requirements
 - » Neither economically nor environmentally desirable
- Investment: Capacity expansion
 - Effect of DR on optimal wind investment
 - Effect of X-price elasticity

© K.U.Leuven – JHU




Representing behavior of price responsive consumers


THU

Constructing an elastic short-term demand curve:

- 1. Solve cost minimizing model, given initial demand levels ${\sf DEM}_{\sf o}$
- 2. Obtain weighted average electricity price P_o
- 3. Add own-price elasticity to (P_o, DEM_o)
 - Direct response
- 4. Add X-price elasticity
 - Load shifting

Demand functions in optimization models

Price 1

p

D

JHU

MC

MW

If we have symmetry in X-effects:

Objective: MAX welfare

= consumer + producer surplus

= demand curve integral - cost

Subject to: system power balance

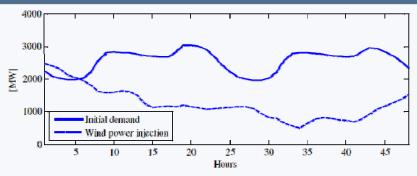
operational constraints (installed reserve margin)

Three computational methods tested

- 1. Quadratic program (Samuelson, 1952)
 - Symmetry required of X-elasticity effects
- 2. Complementarity (Cottle, Pang, Stone, 1992)
 - Doesn't require symmetry
 - Cannot readily handle binary variables
- 3. PIES iterative piecewise linearization (Hogan, 1975)
 - Can handle asymmetry & binary variables

© K.U.Leuven – JHU

Overview


IHU

- Problem: Lack of demand response in operations & planning models
- Representing price responsive consumers
- Operations: Unit commitment
 - Effect of DR on dispatch
 - Effect of wind 'must take' requirements
 - » Neither economically nor environmentally desirable
- Investment: Capacity expansion
 - Effect of DR on optimal wind investment
 - Effect of X-price elasticity

Unit commitment model for wind dominated system

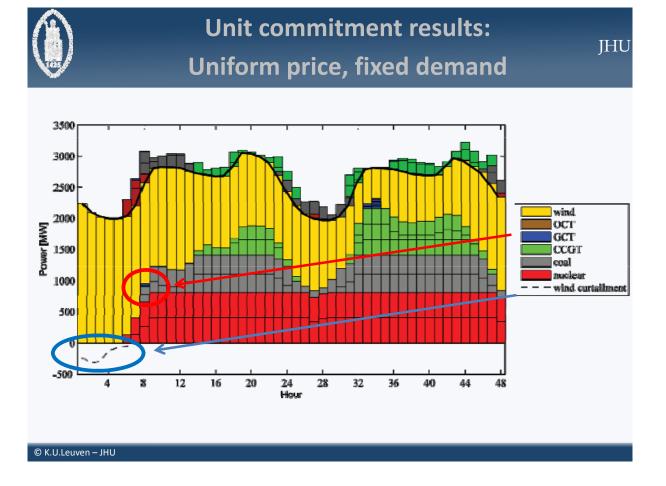
JHU

Min Cost = Cost of fuel + emissions + startups + wind curtailment

Or Max Welfare = Demand curve integral – Cost (own elasticity only)

s.t. System power balance

Ramping constraints

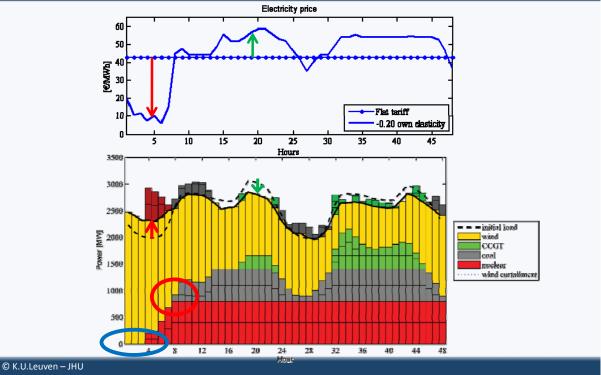

Capacity restrictions

Minimum run levels

Start-up

Minimum on- and down-time

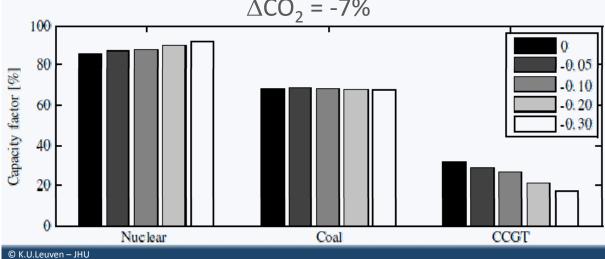
© K.U.Leuven – JHU



Unit commitment results:

JHU

Demand response (own elasticity = -0.2)



Net effect of demand response @ ϵ =-0.2

JHU

 $\Delta \text{Cost} = -14\%$ (more if forecasts uncertain) $\Delta \text{Welfare} = +1.4\%$ (as fraction of cost) $\Delta \text{Wind spill} = -100\%$ $\Delta \text{CO}_2 = -7\%$

Giving wind absolute priority makes neither economic nor environmental sense

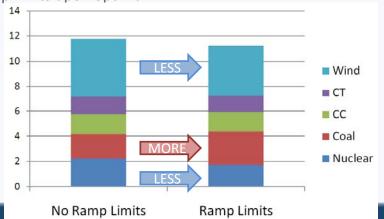
JHU

- EU 'must take' rules; -\$150 bids (or lower) likely in US CAISO
 - Can increase <u>both</u> costs and emissions
- Minimizing wind spill <u>increases</u> fuel costs & CO₂ (relative to dispatch under 0€/MWh wind bid)
 - 17% reduction in spill possible
 - Per MWh of spill reduction:
 - 0.71 ton CO₂ increase (+1.5% total CO₂)
 - 49 € cost increase (+1.3% total cost)
- Assumes:
 - No demand elasticity
 - Fuel dominates startup costs

© K.U.Leuven – JHU

Overview

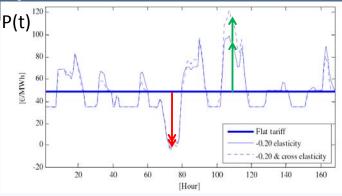
IHU

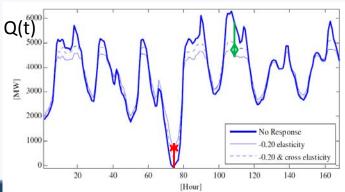

- Problem: Lack of demand response in operations & planning models
- Representing price responsive consumers
- · Operations: Unit commitment
 - Effect of DR on dispatch
 - Effect of wind 'must take' requirements
 - » Neither economically nor environmentally desirable
- Investment: Capacity expansion
 - Effect of DR on optimal wind investment
 - Effect of X-price elasticity

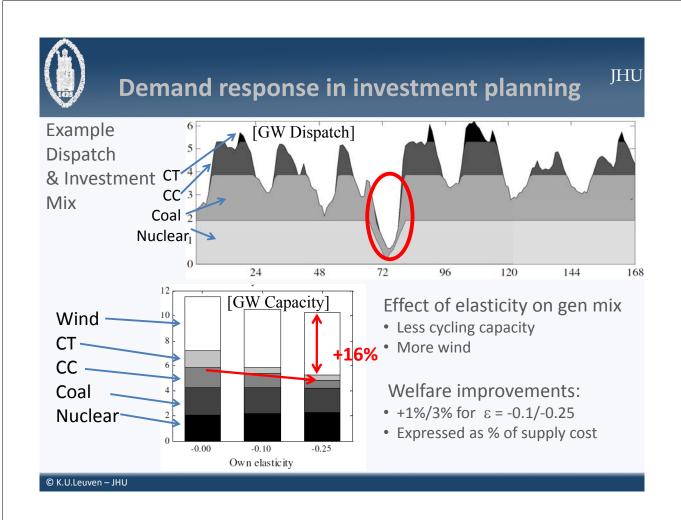
Generation capacity expansion

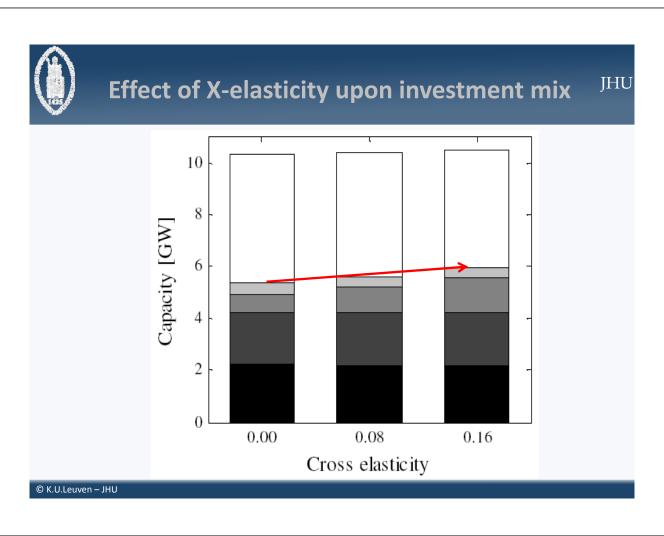
JHU

- Key tradeoffs:
 - More wind penetration requires more ramp capability
 - Baseload capacity less rampable
 - Demand response could provide
- Gen expansion models: often lack ramp and demand-response
 - Need these features to optimally integrate renewables
 - Effect of adding ramp limits upon optimal mix:




© K.U.Leuven – JHU


P & Q effects of own- and X-price elasticities


JHU

- Valley fill & peak reduction effects
- X-price elasticities yield:
 - less load response
 - more price volatility

Conclusion

- Models should account for responsive consumers
 - Ideally: both own- and X-elasticities
 - Welfare max or equilibrium calculation rather than cost minimization
- Short-term response yields
 - Reduced gen investment + operation costs
 - Enhanced value for variable wind power
- Future work:
 - Account for both long- and short-run elasticity
 - Account for uncertain forecasts, lags between commitments and outcomes

© K.U.Leuven – JHU

Bibliography

IHU

- For more information:
 - C. De Jonghe, B.F. Hobbs, and R. Belmans, "Optimal Generation Mix with Short-term Demand Response and Wind Penetration," *IEEE Transactions on Power Systems*, accepted.
 - _____, "Value of Demand Response for Wind Integration in Daily Power
 Generation Scheduling: Unit Commitment Modeling with Price Responsive
 Load," IAEE North American Meeting, Washington DC, Oct. 2011
- Cited literature:
 - R.W. Cottle, J. S. Pang, R. E. Stone. 1992. The Linear Complementarity Problem, Academic Press, Cambridge, MA.
 - W.W. Hogan, "Energy policy models for Project Independence," Computers & Operations Research, vol. 2, Dec. 1975, pp. 251-271.
 - P.A. Samuelson, "Spatial Price Equilibrium and Linear Programming," The American Economic Review, vol. 42, 1952, pp. 283-303.