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Background

As more wind and solar are added to the grid there will be more
need for power system services, like load following and regulation

[Makarov et al., “Operational Impacts of Wind Generation on California Power Systems,” 2009].

These services could be provided by new generators, energy
storage, and/or demand response.

We usually think of using LARGE loads for Demand Response (DR).

In our work, we simulate smail residential loads to determine how
well populations of loads could provide load following.

Why Small??
more reliable — spatially distributed — simple local controls
continuous, not discrete, control response



Thermostatically Controlled Loads
(TCLs)

* Refrigerators, water heaters, air conditioners,

electric space heaters, etc.
E

TCLs

* Store thermal energy in temperature
dead-bands like batteries store chemical

energy

e Hysteretic ON/OFF control




How would we control TCLs?

Our Goal: high resolution control with minimal
sensing/communications infrastructure
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MW

What might the low infrastructure case

look like?
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Presentation Outline

Model of Heterogeneous TCL Populations
Benefits of the Model
The BIG Picture:

— Resource Potential
— Costs
— Profits

Policy Recommendations



TCL Deadbands

TCLs travel around a temperature dead-band, at a rate
determined by their thermal capacitance, thermal resistance,

power transfer rate, and the ambient temperature
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Aggregated TCL Model:
State bin transition model
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Consider thousands of TCLs traveling around a normalized temperature dead-band



Aggregated TCL Model:
State bin transition model
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Divide it into N, /2 temperature intervals.



Aggregated TCL Model:
State bin transition model
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Divide each temperature interval into two state bins, for a total of N, state bins.



Aggregated TCL Model:
State bin transition model
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A Markov Transition Matrix describes the movement of TCLs around
the dead-band.



Aggregated TCL Model:
State bin transition model
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Forcing the system: decreasing aggregate power.



Aggregated TCL Model:
State bin transition model
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Forcing the system: increasing aggregate power.



State Bin Transition Model Equations
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State Bin Transition Model Equations
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X state vector that keeps track of the fraction of TCLs in each bin



State Bin Transition Model Equations
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X state vector that keeps track of the fraction of TCLs in each bin

A transpose of the Markov Transition Matrix that describes how TCLs move
around the dead-band without external forcing



State Bin Transition Model Equations
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transpose of the Markov Transition Matrix that describes how TCLs move
around the dead-band without external forcing

U input vector that allows us to switch TCLs ON or OFF



State Bin Transition Model Equations
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normalized temperature

X state vector that keeps track of the fraction of TCLs in each bin

A transpose of the Markov Transition Matrix that describes how TCLs move
around the dead-band without external forcing

U input vector that allows us to switch TCLs ON or OFF

B matrix that ensures that TCLs are neither created nor lost when we apply control



State Bin Transition Model Equations
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X state vector that keeps track of the fraction of TCLs in each bin

A transpose of the Markov Transition Matrix that describes how TCLs move
around the dead-band without external forcing

U input vector that allows us to switch TCLs ON or OFF

B matrix that ensures that TCLs are neither created nor lost when we apply control

Y  system output which is either:

(1) just the aggregate power consumption of the TCLs
(2) both the aggregate power consumption of the TCLs and all of the states



State Bin Transition Model Equations
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X state vector that keeps track of the fraction of TCLs in each bin

A transpose of the Markov Transition Matrix that describes how TCLs move
around the dead-band without external forcing

U input vector that allows us to switch TCLs ON or OFF

B matrix that ensures that TCLs are neither created nor lost when we apply control

Y  system output which is either:

(1) just the aggregate power consumption of the TCLs
(2) both the aggregate power consumption of the TCLs and all of the states

C avector or matrix that translates the current state to the system output



TCLs in Load Following Markets

TCL performance in load following markets depending
upon the information available both offline and in
real time for:

— System identification (model building)
— State estimation (estimating the x-vector)
— Aggregate power estimation

* Based on power measurements sent from the loads
e Based on other information sent from the loads
 Based on information sent from distribution stations
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1,000 air conditioners controlled with a one step look ahead proportional controller
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Benefits of the Model

 Model + State Estimator + Controller (MSEC) performs better than a
simple Proportional Controller (PC) in most cases.

RMS Tracking Error of 1,000 Heterogeneous Air Conditioners in a Load Following Market
(as a percent of the population’s steady state power consumption)

100% metering 30% metering 5% forecast error  10% forecast error
MSEC 0.66% 4.5%* 4.9% 5.4%
PC 1.1% 4.3% 9.1% 10.5%

*This high error results from using a Kalman Filter on a system with non-Gaussian noise.

 The MSEC gives us additional insight into the behavior of the TCLs and
the ability to control them in ways that minimize impact on the
consumer.



Findings & Comments

Using models, along with state and parameter estimation
techniques, reduces the need for real-time information
gathering and infrastructure.

- expensive metering and telemetry may only be needed at the
distribution substation level, not at each load

Larger TCLs populations perform better.

Aggregated TCLs have essentially no ramp constraints, but
they have kWh capacity constraints.

TCL aggregate power does not lag with respect to control
signals.



Big Picture: Resource Potential

How big is the TCL ‘battery’?
Estimates of kWh and kW Capacity for 1,000 Heterogeneous TCLs

Energy (kWh) Power increase (kW)*  Power decrease (kW)*
Air conditioners 2,500 6,300 1,600
Refrigerators 440 560 24
Heat pump heaters 1,700 6,000 1,900
Electric resistance
water heaters 1,200 3,300 23

* From steady state, the actual available kW changes over time.

Estimates are sensitive to TCL parameters, e.g., deadband width
— double the dead-band, approximately double the kWh capacity!



Big Picture: Costs

e What is needed?

— Communications Should be inexpensive,

— TCL decision making especially if built into new TCLs
— Possibly,

* TCL temperature sensors
» Distribution substation power meters
— Installation = labor costs

— Customer participation = financial compensation



Big Picture: Costs

What is needed?

— Communications Should be inexpensive,

— TCL decision making especially if built into new TCLs
— Possibly,

* TCL temperature sensors
» Distribution substation power meters
— Installation = labor costs

— Customer participation = financial compensation

To compete with a $400/kWh Li-ion battery, the cost of
enabling infrastructure and labor for installation should be:
— Less than $1,000 per air conditioner
— Less than $176 per refrigerator
— Less than S680 per heat pump heater
— Less than S480 per electric resistance water heater



Big Picture: Profits

e TCLs participating in Regulation
— $785-2,010/kW, 1 GW potential in USA (10 years)

[Sandia, “Storage Benefit and Market Guide,” 2010]

e TCLs participating in Load Following
— $600-1,000/kW, 37 GW potential in USA (10 years)

[Sandia, “Storage Benefit and Market Guide,” 2010]

— Energy cost savings through price arbitrage

* 15 minute price arbitrage in Texas: 11% savings

[RMI, “The Role of DR in an Increasingly Renewable Grid,” 2011]
* 5 minute price arbitrage in California: 8% savings
* Analysis assumes:

— DR operates at the margin

— loads buying/selling power in the same market

— perfect price forecasts

* Next step: more comprehensive and realistic physical
system + market models



Policy Recommendations

* Design of new energy and ancillary services market
products suited to loads, which do not have the same
characteristics and constraints as generators.

— Aggregations of small loads do not have ramp rates, but
have strict kWh capacity constraints.

— One idea: energy market product with a zero mean signal.

 Make it easier to engage residential loads in DR.

— Resolve privacy issues through use of good
communications standards.

— Design appliance standards to enable fast-DR.
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