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Outline 

• Description of CCS projects in the European Union 

• Description of state transition probabilities and costs  

• Real options formulation for this problem 
– Modeling it as a multi-project, multi-project competition 

• Solution results under different budgets (and budget 
allocations) for: 
– Pre-Combustion projects 

– Post-Combustion and Oxyfuel projects 

• Results for knowledge spillover cases 

• Conclusions and acknowledgements 
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• CO2 emissions from large point sources are captured, 
compressed, transported and stored underground.  

• Three technology options: 
– Post- and  

– Pre-combustion capture  

– Oxyfuel process  

• Pre- and post-comb.  
capture are proven  
technologies on small  
and medium scale. 

• Innovative oxyfuel  
plants considered  
“higher costs, higher risk”  
projects. 

Carbon Capture and Storage 



4 

• The first CCS (30 MW oxy-fuel) pilot project started operation in 
Germany in 2008.  

• Demonstration projects (<300MW) planned in different EU member 
states by various companies through 2015. 

• Full scale oxyfuel power plants (~1GW) should be operating by 2020. 

 

 

 

 

 

• Due to high costs and high risk of technology failure, public funding is 
needed to get the technology working at large-scale by 2022. 

• Project success probabilities depend on public funding decisions and 
the state of the project and competing projects. 

CCS Projects in the EU 

2010   2015   2020 



Project Costs and Transition Probabilities 
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Project Costs and Transition Probabilities 

• Experts gave their opinion for the technology success probability 
assuming a 500 MW plant. 

• In a next step, those success probabilities were adjusted 
according to the plant size and the potential budget. 

0 – 150  MW 150 - 300  MW 300 - 600 MW  600 - 800 MW 800 - 1200 MW 

Post-

combustion  
100% 86% 75% 68% 60% 

Pre-combustion 81% 69% 58% 46% 41% 

Oxyfuel 98% 81% 68% 54% 48% 

- 20% - 10% 500 MW + 10% + 20% 

Post-combustion 65% 68% 75% 80% 85% 

Pre-combustion 46% 50% 58 62% 66% 

Oxyfuel 55% 59% 68 73% 77% 

Technology success probability of the first project subject to changes in the budget  

Success probability of the first project staying within the budget  
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Other Cost and Probability Parameters 

• If previous stage was successfully undertaken within a project, 
the success probability for the following stage increases by 20%.  

• There are early innovators for each technology. These have a 5% 
higher success probability on each stage: 

– Oxy-Fuel:   Vattenfall 

– Pre-Combustion:  RWE 

– Post-Combustion: E.ON 

• There may be cross-technology learning (knowledge spillover) 
between post-combustion and oxy-fuel projects. This lowers the 
investment costs of the plants: 

  Post-combustion Pre-combustion Oxyfuel 

Post-combustion  - 8% 0% - 3% 

Pre-combustion 0% - 8% 0% 

Oxyfuel - 3% 0% - 8% 
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CCS Projects Considered 

• 8 Projects in Total 

– 2 Oxyfuel 

– 3 Post-Combustion 

– 3 Pre-Combustion 

 

 

 

 

 

 

 

 

 

 

 

 

– PCC: Pre-Combustion Capture 

Project 
Unit Size [MW] Expected Start of Operation 

Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3 

Oxy 1 30 300 1000 2008 2014 2018 

Oxy 2 30 320 - 2012 2016 - 

Post 1 - 250 - - 2014 - 

Post 2 - 450 900 - 2014 2018 

Post 3 - 250 - - 2016 - 

Pre 1 - 450 - - 2014 - 

Pre 2 - 900 IGCC 300 PCC - 2014 2016 

Pre 3 - 1200 IGCC 900 PCC - 2012 2014 

 

8 



 

 

 

 

 

 

 

 

 

 

 

 

• Full success is defined as reaching State (3,2,-,-,-) 

Technology State Definition  

State (2, 1, 0, 0, 0)

Project stage:

1 = Pilot stage

2 = Demonstration stage

3 = Full-Scale project

Operation phase:

1 = Construction

2 = Proven

Third party project:

0 = No third party operating

1 = Oxyfuel project operating

2 = Post-comb project operating

3 = Pre-comb project operating

4 = post and oxy operating

Construction started:

0 = four years earlier

1 = six years earlier 

2 = eight years earlier 

Previous stage: 

0 = not undertaken

1 = success

Affects cases where 

knowledge spillover occurs 

9 
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Central Questions: 

• From the EU’s perspective, how should they fund R&D in 
these CCS projects for power generation? 

• Need to consider that there is limited investment capital. 

• Different objective functions possible: 

– Maximize probability of a fully functioning CCS plant by 2022 

– Multi-objective function that considers above objective with additional 
technology aspects such as CO2 storage or transport. 

– etc. 

• Our objective function: Maximize probability of a fully 
functioning CCS plant by 2022 under two cases: 

– Pre-Combustion projects 

– Post-Combustion and Oxyfuel projects 

• This is essentially a real options problem that considers R&D 
investment under uncertainty. 

Overview of CCS Real Options Problem 
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A Real Options Approach for CCS Funding 

• Consider the problem as a multi-stage, multi-project competition 
ideal problem for a real options framework: 

– Each stage represents a decision time period (here, 2 years) 

– The cost of exercising each option is the amount of funding required 
for each project’s development 

– An option is exercised through the award of a continuation of 
funding. 

t = 0 t = 1

Project 1

t = 2

Uncertain 

Outcomes

Project 2

Project 3

t = 0 t = 1

Project 1

t = 2

Uncertain 

Outcomes

Project 2

Project 3

• Solution is the optimal 
portfolio of options (energy 
projects) to fund at each 
stage to maximize overall 
capability success. 

• Can use stochastic dynamic 
programming to solve. 

• We use the transition 
probabilities: 

 ]1,|[ 1  itltit XSssP



How can budgets be allocated? 

• Case 1: Each time period the decision-maker has a fixed budget 
available 

– For example, 400 million Euros each of the six time periods: (400, 400, 
400, 400, 400, 400) 

• Case 2: The total budget is flexible, and is spent as needed 

– Begin first time period with 400x6 = 2400 million Euros, and 
determine how much to spend optimally at each time period 

• This offers the most flexibility to the decision-maker. 

• Case 3: Each time period’s budget is optimized  

– For example, can allocate budget as (600, 300, 300, 600, 200, 
400) among the six time periods, if that is optimal 

– Eckhause, et al. (2011): solving as an integer program for Case 3 
can be faster for problems of a certain size. 

 

 

CCS Real Options Problem: Possible Budget Allocations 

*

2 Case

*

3 Case

*

1 Case zzz 
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Suppose the budget amount for every stage is fixed. 

 

 

 

 

 

 

 

   We solve for: 

 

 

    So that  

   

    Where:  

Applying Real Options to CCS Funding 

Decisions: Fixed Budget (Case 1) 

 Let Ssit   be the state of project i  at time period t .  State of all projects at time 

t  is tS  

 Ss full  is the state representing a successfully operating full-scale CCS plant. 

 Let }1,0{itlX  be the decision variable of whether to fund project i  at time 

period t  at level l  

 Let 
titlSc  represent the cost of funding project i  at level l  in time period t , given 

that the state of the system is tS  

 Let tB  represent the budget available for time period t  
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Extending the formulation to a flexible budget (Case 2): 

• Total budget for all periods     can be spread budget between each phase 

–    denotes budget remaining at time period t: 

– Boundary condition: 

 

• Must discretize budget between periods. 

– Value for budget increment can be between 1-10 million Euros. 

• The run-times and state variables for the flexible-budget problems span: 

 

Extending the Problem: Flexible Budget (Case 2) 

1B

tB

 

CCS Projects
With 

Spillover?

Budget 

Increment 

(€ Million)

State Variables 

(Each Period)

State Variables 

(Total)

Run-Time 

(CPU Sec.)

Pre-Combustion No 1 353,700 2,122,200 8

Post-Combustion 

& Oxyfuel
No 1 940,800 5,644,800 46

Pre-Combustion Yes 1 2,122,200 12,733,200 63

Post-Combustion 

& Oxyfuel
Yes 10 23,708,160 142,248,960 974
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Extending the formulation to a specified, but optimized, budget for each 
time period. 

• Must solve this problem as a two-level SDP where 

– the upper level problem is “all possible” budget allocations 

– the lower-level problem is an optimal solution for a fixed-budget 
allocation 

• Scenario-reduction heuristics were employed. The run-times and 
number of lower-level problems for the budget-optimal problem: 

 

Extending Further: Budget-Optimal (Case 3) 

Total Budget 600 [m €] 1200 [m €] 1800 [m €] 2400 [m €] 2910 [m €] 3420 [m €] 3930 [m €]

Run-Time 

(sec)
22 514 201 851 1,873 386 558

Lower-Level 

SDPs
710 24,376 8,708 38,608 73,922 16,815 20,518

Total Budget 600 [m €] 1200 [m €] 1800 [m €] 2100 [m €] 2400 [m €] 4800 [m €]

Run-Time 

(sec)
2 19 205 119 157 1,828

Lower-Level 

SDPs
156 5,947 75,813 40,332 55,471 607,474

Pre- 

Comb 

Post- 

Comb & 

Oxyfuel 
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• For the Pre-Combustion projects, we get the following 
probability of success as a function of overall budget 

Results: Pre-Combustion Projects 
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• For the Pre-Combustion CCS projects, the objective 
functions’ values (probability of success) depend 
greatly on the budget allocation scheme.   

Fixed-Budget vs. Budget-Optimal Solutions 

Period  Budget [m €] Budget [m €] Budget [m €] Budget [m €] Budget [m €] Budget [m €]

1 (2010) 200 300 400 910 910 910

2 (2012) 200 300 400 400 910 910

3 (2014) 200 300 400 400 400 910

4 (2016) 200 300 400 400 400 400

5 (2018) 200 300 400 400 400 400

6 (2020) 200 300 400 400 400 400

Total Budget 1200 1800 2400 2910 3420 3930

Fixed-Budget 

Objective
0.000 0.000 0.844 0.902 0.943 0.962

Period  Budget [m €] Budget [m €] Budget [m €] Budget [m €] Budget [m €] Budget [m €]

1 (2010) 324 732 732 732 1056 1056

2 (2012) 0 0 423 423 423 423

3 (2014) 345 324 423 747 747 1140

4 (2016) 345 324 324 423 648 747

5 (2018) 84 324 324 423 423 423

6 (2020) 102 96 174 162 123 141

Total Budget 1200 1800 2400 2910 3420 3930

Budget-Optimal 

Objective
0.779 0.889 0.933 0.958 0.966 0.971
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• For the Post-Combustion and Oxyfuel Projects, the 
budget allocation case greatly affects the solution 

Results: Post-Combustion and Oxyfuel Projects 
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• Based on our assumptions about the effects knowledge spillover, the 
results varied little for both sets of technologies 

 

CCS Real Options Results: Knowledge Spillover 

 
No Spillover 

(A)

Knowledge 

Spillover (B)

Increase 

(B-A)

No Spillover 

(A)

Knowledge 

Spillover (B)

Increase 

(B-A)

0 0 0 0 0 0 0

600 0 0 0 0.405 0.405 0

1200 0 0 0 0.781 0.781 <0.001

1800 0 0 0 0.903 0.903 0.001

2400 0.844 0.844 0 0.937 0.938 0.001

2910 0.902 0.903 <0.001 0.962 0.963 0.001

3420 0.943 0.944 0.001 0.968 0.969 0.001

3930 0.962 0.963 0.001 0.974 0.975 0.001

Budget [m €]

Fixed-Budget Problems Flexible-Budget Problems
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(A)

Knowledge 

Spillover (B)

Increase 

(B-A)

No Spillover 

(A)

Knowledge 

Spillover (B)

Increase 

(B-A)

0 0 0 0 0 0 0

600 0 0 0 0.712 0.712 0

1200 0 0 0 0.936 0.936 0

1800 0 0 0 0.973 0.974 0.001

2100 0 0.720 0.720 0.984 0.984 0.000

2400 0.936 0.936 <0.001 0.989 0.990 0.001

4800 0.993 0.993 <0.001 0.998 0.999 <0.001

Budget [m €]

Fixed-Budget Problems Flexible-Budget Problems

Pre- 

Comb 

Post- 

Comb & 

Oxyfuel 
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Summary and Conclusions 

• This real options approach allows for a more quantitative risk 
mitigation for the funding of CCS projects in the EU. 

– Approach can easily be extended to other funding scenarios and 
objective functions.  

• Budget allocation can greatly affect the probability of project success 

– It is important to identify how success probabilities change with funding 
levels, as the outcomes are greatly dependent upon it.  

• A natural conflict between the risk-minimizing CCS portfolio 
strategy from the perspective of the funding agency and the necessity 
for a credible funding strategy from the perspective of the firms 

• Budget-optimal allocation leads to objective function values very 
close to the fully flexibly budget allocation.  

– The advantage of the budget-optimal allocation over the flexible 
allocation is an increase in the credibility of the funding scheme from 
the perspective of the firms undertaking such high risk projects. 
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