#### Using Real Options to Evaluate Optimal Funding Strategies for Carbon Capture, Transport and Storage Projects in the European Union

#### Jeremy M. Eckhause

Research Fellow, LMI

Ph.D. Candidate, Civil Systems, Department of Civil & Environmental Engineering, University of Maryland

#### **Johannes Herold**

Ph.D. Candidate, Workgroup for Infrastructure Policy (WIP), Berlin University of Technology (TU Berlin)

th 5 Trans-Atlantic INFRADAY 2010

**Resources for the Future, Washington, DC** 

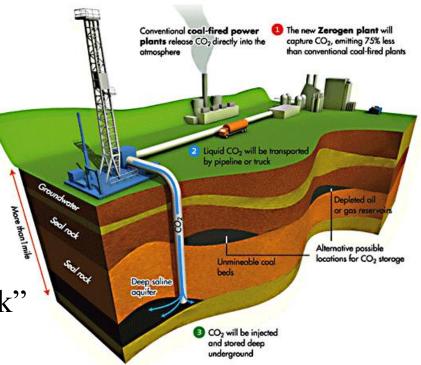
November 11, 2011







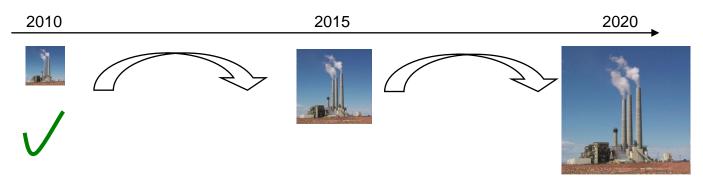



### Outline

- Description of CCS projects in the European Union
- Description of state transition probabilities and costs
- Real options formulation for this problem
  - Modeling it as a multi-project, multi-project competition
- Solution results under different budgets (and budget allocations) for:
  - Pre-Combustion projects
  - Post-Combustion and Oxyfuel projects
- Results for knowledge spillover cases
- Conclusions and acknowledgements



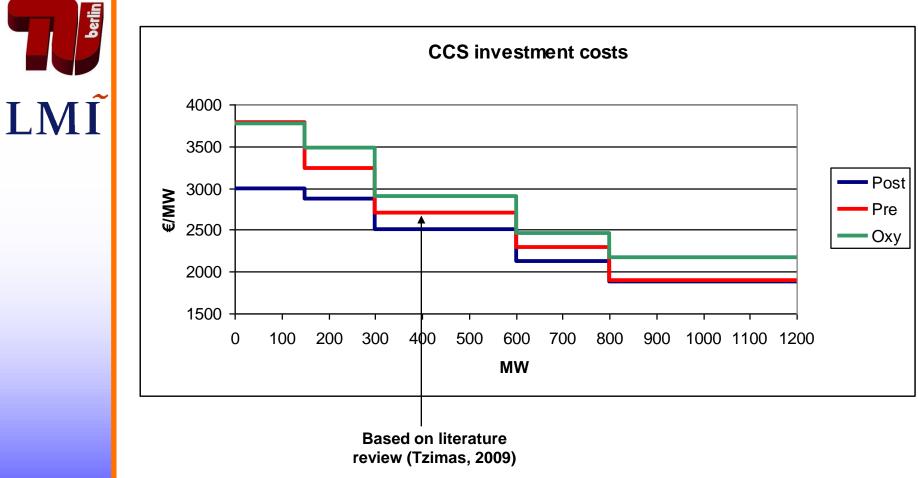
# **Carbon Capture and Storage**


- CO<sub>2</sub> emissions from large point sources are captured, compressed, transported and stored underground.
- Three technology options:
  - Post- and
  - Pre-combustion capture
  - Oxyfuel process
- Pre- and post-comb. capture are proven technologies on small and medium scale.
- Innovative oxyfuel plants considered "higher costs, higher risk" projects.





# **CCS Projects in the EU**


- The first CCS (30 MW oxy-fuel) pilot project started operation in Germany in 2008.
- Demonstration projects (<300MW) planned in different EU member states by various companies through 2015.
- Full scale oxyfuel power plants (~1GW) should be operating by 2020.



- Due to high costs and high risk of technology failure, public funding is needed to get the technology working at large-scale by 2022.
- Project success probabilities depend on public funding decisions and the state of the project and competing projects.



#### **Project Costs and Transition Probabilities**





#### **Project Costs and Transition Probabilities**

- Experts gave their opinion for the technology success probability assuming a 500 MW plant.
- In a next step, those success probabilities were adjusted according to the plant size and the potential budget.

Success probability of the first project staying within the budget

|                     | 0 – 150 MW | 150 - 300 MW | 300 - 600 MW | 600 - 800 MW | 800 - 1200 MW |
|---------------------|------------|--------------|--------------|--------------|---------------|
| Post-<br>combustion | 100%       | 86%          | 75%          | 68%          | 60%           |
| Pre-combustion      | 81%        | 69%          | 58%          | 46%          | 41%           |
| Oxyfuel             | 98%        | 81%          | 68%          | 54%          | 48%           |

Technology success probability of the first project subject to changes in the budget

|                 | - 20% | - 10% | 500 MW | + 10% | + 20% |
|-----------------|-------|-------|--------|-------|-------|
| Post-combustion | 65%   | 68%   | 75%    | 80%   | 85%   |
| Pre-combustion  | 46%   | 50%   | 58     | 62%   | 66%   |
| Oxyfuel         | 55%   | 59%   | 68     | 73%   | 77%   |



# **Other Cost and Probability Parameters**

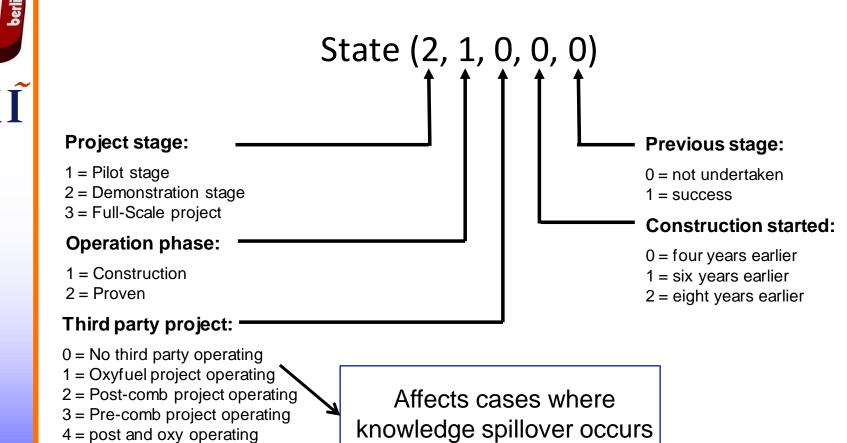
- If previous stage was successfully undertaken within a project, the success probability for the following stage increases by 20%.
- There are early innovators for each technology. These have a 5% higher success probability on each stage:
  - Oxy-Fuel: Vattenfall
  - Pre-Combustion: RWE
  - Post-Combustion: E.ON
- There may be cross-technology learning (knowledge spillover) between post-combustion and oxy-fuel projects. This lowers the investment costs of the plants:

|                 | Post-combustion | Pre-combustion | Oxyfuel |
|-----------------|-----------------|----------------|---------|
| Post-combustion | - 8%            | 0%             | - 3%    |
| Pre-combustion  | 0%              | - 8%           | 0%      |
| Oxyfuel         | - 3%            | 0%             | - 8%    |



•

# **CCS Projects Considered**


- 8 Projects in Total
  - 2 Oxyfuel
  - 3 Post-Combustion
  - 3 Pre-Combustion

| Project |         | Unit Size [MV | V]      | Expected Start of Operation |         |         |  |
|---------|---------|---------------|---------|-----------------------------|---------|---------|--|
| Troject | Stage 1 | Stage 2       | Stage 3 | Stage 1                     | Stage 2 | Stage 3 |  |
| Oxy 1   | 30      | 300           | 1000    | 2008                        | 2014    | 2018    |  |
| Oxy 2   | 30      | 320           | -       | 2012                        | 2016    | -       |  |
| Post 1  | -       | 250           | -       | -                           | 2014    | -       |  |
| Post 2  | -       | 450           | 900     | -                           | 2014    | 2018    |  |
| Post 3  | -       | 250           | -       | -                           | 2016    | -       |  |
| Pre 1   | -       | 450           | -       | -                           | 2014    | -       |  |
| Pre 2   | -       | 900 IGCC      | 300 PCC | -                           | 2014    | 2016    |  |
| Pre 3   | -       | 1200 IGCC     | 900 PCC | -                           | 2012    | 2014    |  |

- PCC: Pre-Combustion Capture



## **Technology State Definition**



• Full success is defined as reaching State (3,2,-,-,-)



# **Overview of CCS Real Options Problem**

#### Central Questions:

- From the EU's perspective, how should they fund R&D in these CCS projects for power generation?
- Need to consider that there is limited investment capital.
- Different objective functions possible:
  - Maximize probability of a fully functioning CCS plant by 2022
  - Multi-objective function that considers above objective with additional technology aspects such as CO<sub>2</sub> storage or transport.
  - etc.
- **Our objective function**: *Maximize probability of a fully functioning CCS plant by 2022 under two cases*:
  - Pre-Combustion projects
  - Post-Combustion and Oxyfuel projects
- This is essentially a real options problem that considers R&D investment under uncertainty.



•

# **A Real Options Approach for CCS Funding**

- Consider the problem as a multi-stage, multi-project competition ideal problem for a real options framework:
  - Each stage represents a decision time period (here, 2 years)
  - The cost of exercising each option is the amount of funding required for each project's development
  - An option is exercised through the award of a continuation of funding.
- Solution is the optimal portfolio of options (energy projects) to fund at each stage to maximize overall capability success.
- Can use stochastic dynamic programming to solve.
- We use the transition probabilities:  $\mathbf{P}[s_{it+1} = s \mid S_t, X_{itl} = 1]$





#### **CCS Real Options Problem: Possible Budget Allocations**

How can budgets be allocated?

- Case 1: Each time period the decision-maker has a fixed budget available
  - For example, 400 million Euros each of the six time periods: (400, 400, 400, 400, 400, 400)
- Case 2: The total budget is flexible, and is spent as needed
  - Begin first time period with 400x6 = 2400 million Euros, and determine how much to spend optimally at each time period
    - This offers the most flexibility to the decision-maker.
- Case 3: Each time period's budget is optimized
  - For example, can allocate budget as (600, 300, 300, 600, 200, 400) among the six time periods, if that is optimal
  - Eckhause, *et al.* (2011): solving as an integer program for Case 3 can be faster for problems of a certain size.

$$z_{\text{Case1}}^* \le z_{\text{Case3}}^* \le z_{\text{Case2}}^*$$



#### Applying Real Options to CCS Funding Decisions: Fixed Budget (Case 1)

Suppose the budget amount for every stage is fixed.

- Let  $s_{it} \in S$  be the state of project *i* at time period *t*. State of all projects at time *t* is  $S_t$
- $s_{\text{full}} \in S$  is the state representing a successfully operating full-scale CCS plant.
- Let  $X_{itl} \in \{0,1\}$  be the decision variable of whether to fund project *i* at time period *t* at level *l*
- Let  $c_{itlS_t}$  represent the cost of funding project *i* at level *l* in time period *t*, given that the state of the system is  $S_t$
- Let  $B_t$  represent the budget available for time period t

We solve for:  $X(S_t) = \begin{cases} (X_t) \in \{0,1\}^{I \times L} : \sum_{i,l} c_{itlS_t} X_{itl} \le B_t \\ \sum_{l \in L} X_{itl} \le 1 \quad \forall i \in I \end{cases}$ 

So that  $V_t(S_t) = \max_{X_t \in X(S_t)} \mathbf{E}\{V_{t+1}(S_{t+1}) \mid S_t, X_t\} \quad t = 1, ..., T$ 

Where:  $V_{T+1}(S_{T+1}) = \begin{cases} 1 & \text{if } s_{i,T+1} = s_{\text{full}} & \text{for some project } i \\ 0 & \text{otherwise} \end{cases}$ 



### **Extending the Problem: Flexible Budget (Case 2)**

Extending the formulation to a flexible budget (Case 2):

- Total budget for all periods  $B_1$  can be spread budget between each phase
  - $B_t$  denotes budget *remaining* at time period t:  $B_{t+1} = B_t \sum_{i \neq l} c_{itlS_t} X_{itl}$
  - Boundary condition:

 $V_t(S_t, B_t) = \max_{(X_t, B_{t+1}) \in X(S_t, B_t)} \mathbf{E}\{V_{t+1}(S_{t+1}, B_{t+1}) \mid S_t, X_t\} \quad t = 1, \dots, T$ 

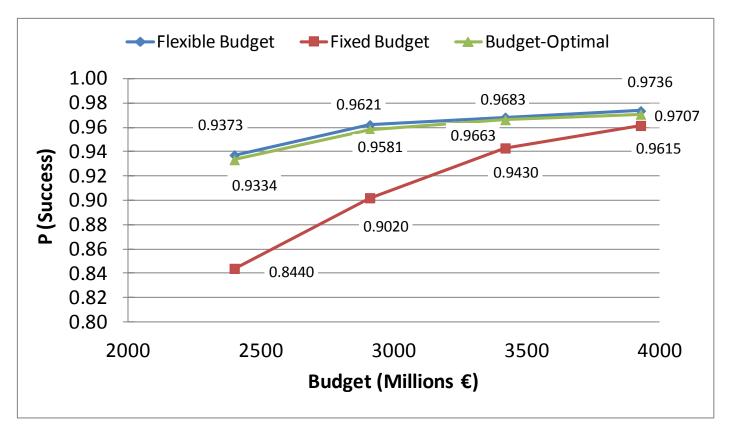
- Must discretize budget between periods.
  - Value for budget increment can be between 1-10 million Euros.
- The run-times and state variables for the flexible-budget problems span:

| CCS Projects                 | With<br>Spillover? | Budget<br>Increment<br>(€ Million) | State Variables<br>(Each Period) | State Variables<br>(Total) | Run-Time<br>(CPU Sec.) |
|------------------------------|--------------------|------------------------------------|----------------------------------|----------------------------|------------------------|
| Pre-Combustion               | No                 | 1                                  | 353,700                          | 2,122,200                  | 8                      |
| Post-Combustion<br>& Oxyfuel | No                 | 1                                  | 940,800                          | 5,644,800                  | 46                     |
| Pre-Combustion               | Yes                | 1                                  | 2,122,200                        | 12,733,200                 | 63                     |
| Post-Combustion<br>& Oxyfuel | Yes                | 10                                 | 23,708,160                       | 142,248,960                | 974                    |



### **Extending Further: Budget-Optimal (Case 3)**

- Extending the formulation to a specified, but optimized, budget for each time period.
  - Must solve this problem as a two-level SDP where
    - the upper level problem is "all possible" budget allocations
    - the lower-level problem is an optimal solution for a fixed-budget allocation
- Scenario-reduction heuristics were employed. The run-times and number of lower-level problems for the budget-optimal problem:


|      | Total Budget        | 600 [m €] | 1200 [m €] | 1800 [m €] | 2400 [m €] | 2910 [m €] | 3420 [m €] | 3930 [m €] |
|------|---------------------|-----------|------------|------------|------------|------------|------------|------------|
| Pre- | Run-Time<br>(sec)   | 22        | 514        | 201        | 851        | 1,873      | 386        | 558        |
| Comb | Lower-Level<br>SDPs | 710       | 24,376     | 8,708      | 38,608     | 73,922     | 16,815     | 20,518     |

|                 | Total Budget        | 600 [m €] | 1200 [m €] | 1800 [m €] | 2100 [m €] | 2400 [m €] | 4800 [m €] |
|-----------------|---------------------|-----------|------------|------------|------------|------------|------------|
| Post-<br>Comb & | Run-Time<br>(sec)   | 2         | 19         | 205        | 119        | 157        | 1,828      |
| Oxyfuel         | Lower-Level<br>SDPs | 156       | 5,947      | 75,813     | 40,332     | 55,471     | 607,474    |



### **Results: Pre-Combustion Projects**

• For the Pre-Combustion projects, we get the following probability of success as a function of overall budget

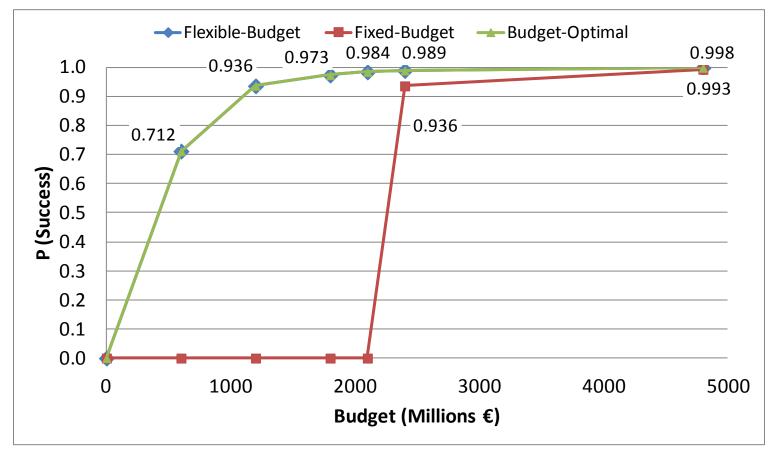




berlin

### **Fixed-Budget vs. Budget-Optimal Solutions**

• For the Pre-Combustion CCS projects, the objective functions' values (probability of success) depend greatly on the budget allocation scheme.


| Period                    | Budget [m€] |
|---------------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 1 (2010)                  | 200         | 300         | 400         | 910         | 910         | 910         |
| 2 (2012)                  | 200         | 300         | 400         | 400         | 910         | 910         |
| 3 (2014)                  | 200         | 300         | 400         | 400         | 400         | 910         |
| 4 (2016)                  | 200         | 300         | 400         | 400         | 400         | 400         |
| 5 (2018)                  | 200         | 300         | 400         | 400         | 400         | 400         |
| 6 (2020)                  | 200         | 300         | 400         | 400         | 400         | 400         |
| Total Budget              | 1200        | 1800        | 2400        | 2910        | 3420        | 3930        |
| Fixed-Budget<br>Objective | 0.000       | 0.000       | 0.844       | 0.902       | 0.943       | 0.962       |

| Period                      | Budget [m€] |
|-----------------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 1 (2010)                    | 324         | 732         | 732         | 732         | 1056        | 1056        |
| 2 (2012)                    | 0           | 0           | 423         | 423         | 423         | 423         |
| 3 (2014)                    | 345         | 324         | 423         | 747         | 747         | 1140        |
| 4 (2016)                    | 345         | 324         | 324         | 423         | 648         | 747         |
| 5 (2018)                    | 84          | 324         | 324         | 423         | 423         | 423         |
| 6 (2020)                    | 102         | 96          | 174         | 162         | 123         | 141         |
| Total Budget                | 1200        | 1800        | 2400        | 2910        | 3420        | 3930        |
| Budget-Optimal<br>Objective | 0.779       | 0.889       | 0.933       | 0.958       | 0.966       | 0.971       |



### **Results: Post-Combustion and Oxyfuel Projects**

• For the Post-Combustion and Oxyfuel Projects, the budget allocation case greatly affects the solution





### **CCS Real Options Results: Knowledge Spillover**

• Based on our assumptions about the effects knowledge spillover, the results varied little for both sets of technologies

| Pre- |  |
|------|--|
|      |  |

#### Comb

|              | Fixed | d-Budget Probler | ns       | Flexib       | le-Budget Proble | ems      |
|--------------|-------|------------------|----------|--------------|------------------|----------|
| Budget [m €] | -     | Knowledge        | Increase | No Spillover | Knowledge        | Increase |
|              | (A)   | Spillover (B)    | (B-A)    | (A)          | Spillover (B)    | (B-A)    |
| 0            | 0     | 0                | 0        | 0            | 0                | 0        |
| 600          | 0     | 0                | 0        | 0.405        | 0.405            | 0        |
| 1200         | 0     | 0                | 0        | 0.781        | 0.781            | <0.001   |
| 1800         | 0     | 0                | 0        | 0.903        | 0.903            | 0.001    |
| 2400         | 0.844 | 0.844            | 0        | 0.937        | 0.938            | 0.001    |
| 2910         | 0.902 | 0.903            | <0.001   | 0.962        | 0.963            | 0.001    |
| 3420         | 0.943 | 0.944            | 0.001    | 0.968        | 0.969            | 0.001    |
| 3930         | 0.962 | 0.963            | 0.001    | 0.974        | 0.975            | 0.001    |

|         |              | Fixed-Budget Problems |                            |                   | Flexib              | Flexible-Budget Problems   |                   |  |  |
|---------|--------------|-----------------------|----------------------------|-------------------|---------------------|----------------------------|-------------------|--|--|
|         | Budget [m €] | No Spillover<br>(A)   | Knowledge<br>Spillover (B) | Increase<br>(B-A) | No Spillover<br>(A) | Knowledge<br>Spillover (B) | Increase<br>(B-A) |  |  |
| Post-   | 0            | 0                     | 0                          | 0                 | 0                   | 0                          | 0                 |  |  |
| F051-   | 600          | 0                     | 0                          | 0                 | 0.712               | 0.712                      | 0                 |  |  |
| Comb &  | 1200         | 0                     | 0                          | 0                 | 0.936               | 0.936                      | 0                 |  |  |
|         | 1800         | 0                     | 0                          | •                 | 0.973               | 0.974                      | 0.001             |  |  |
| Oxyfuel | 2100         | 0                     | 0.720                      | 0.720             | 0.984               | 0.984                      | 0.000             |  |  |
| -       | 2400         | 0.936                 | 0.936                      | <0.001            | 0.989               | 0.990                      | 0.001             |  |  |
|         | 4800         | 0.993                 | 0.993                      | <0.001            | 0.998               | 0.999                      | <0.001            |  |  |



# **Summary and Conclusions**

- This real options approach allows for a more quantitative risk mitigation for the funding of CCS projects in the EU.
  - Approach can easily be extended to other funding scenarios and objective functions.
- Budget allocation can greatly affect the probability of project success
  - It is important to identify how success probabilities change with funding levels, as the outcomes are greatly dependent upon it.
- A natural conflict between the risk-minimizing CCS portfolio strategy from the perspective of the funding agency and the necessity for a credible funding strategy from the perspective of the firms
- Budget-optimal allocation leads to objective function values very close to the fully flexibly budget allocation.
  - The advantage of the budget-optimal allocation over the flexible allocation is an increase in the credibility of the funding scheme from the perspective of the firms undertaking such high risk projects.



# **Acknowledgements and Bibliography**

- We would like to thank the following for their estimates of the costs and success probabilities for the CCS projects in this presentation:
  - Dr. Joachim Geske, Dr. Peter Markewitz, and Dr. Stefan Vögele from Forschungszentrum Jülich
  - Mr. Michael Trompelt of Technische Universität Bergakademie Freiberg
  - Two anonymous experts
- Bibliography
  - Eckhause, J.M., and Herold, J. (2011). "Using Real Options to Evaluate Optimal Funding Strategies for Carbon Capture, Transport and Storage (CCS) Projects in the European Union," Under Review.
  - Eckhause, J.M., Gabriel, S.A., and Hughes, D.R. (2011). "An Integer Programming Approach for Evaluating R&D Funding Decisions with Optimal Budget Allocations," *IEEE Transactions on Engineering Management*, Forthcoming.
  - Eckhause, J.M., Hughes, D.R., and Gabriel, S.A. (2009). "Evaluating Real Options for Mitigating Technical Risk in Public Sector R&D Acquisitions," *International Journal of Project Management*, 27(4): 365-377.