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2009 total U.S. energy use = 94.6 quadrillion BTU
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8% of the U.S. renewable energy use is about 7.6 quadrillion BTU

Solar Geothermal
1% 5%

1.7 quadrillion BTU can get from human’s waste



What’s in Your Waste

Wastewater - ‘ Municipal solid waste
Biosolids 0.00014 dt/cap/day Municipal solid waste(MSW) 4.6 lbs/cap/day
Biogas 11391.0 cf/dt US population 2010 321,471,327.0 capita
US population 2010 321,471,327.0 capita US MSW per day 1,478,768,104.2 Ibs/day
US bio-methane 93,560,784,675.9 cf/year Biodegradable Waste 28.30%
US biogas Energy 112,272,941,611,049.0 BTU/year US bio Waste 418,491,373.5 lbs/day
US bio-methane 1,332,214,160,021.1 cf/year
US biogas energy 1,598,656,992,025,310.00 BTU/year

U.S. biogas as renewable energy potential is 1,425,774,944,697 cf/year
or 1.7 quadrillion BTU/ year (about 1.7% of US energy used in 2009)



Carbon Dioxide Emission Advantage from Waste

Coal | Petroleum | Natural gas Biomass
Wood | Landfill gas |WWT biogas
CO2 emission factor | 103.62 73.15 53.06 93.87 52.07 52.07
kg CO2/MMBTU
CO2 emission factor - - 0.0546 - 0.0262 =0.0262
kg CO2/scf ( for Gas)
Note:

1. CO2 emission factors (per unit energy) are calculated as: Carbon Content x Fraction Oxidized x

44/12.

2. CO2 emission factors (per unit mass or volume) are calculated using : Heat Content x Carbon

Content x Fraction Oxidized x 44/12 x Conversion Factor (if applicable). Heat content factors are
based on higher heating values (HHV)
3. Waste from wastewater treatment plant produce WWT biogas
4. Municipal solid waste produce landfill gas

(Source: U.S. EPA Climate Leaders, Stationary Combustion Guidance (2007), Table B-2)




World Carbon Dioxide Emissions Data by Country
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CO, Offset from Using Your Waste

Wastewater Municipal solid waste

-

CO2 emission factor 52.070 kg(C0O2/ MMBTU
CO2 offset* from MSW 83,242,069.575 ton CO2/year

-

CO2 emission factor 52.070 kg (CO2/ MMBTU
CO2 offset* from WWTP  5,846,052.070 ton CO2/year

Use biogas from waste can offset 89,088,121.6 ton CO2/year
(about 1.64 % of US CO, emission amount in 2009)
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The Blue Plains AWTP, DC Water Operational Process
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Biosolids management program
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This research uses a stochastic, multi-objective, optimization model
under uncertainty to answer questions like
“what we get from recycle biosolids”

* The first stage makes a decision “which process (digestion,
producing Class A or Class B biosolids) will be the effective
choice for Blue Plains to manage biosolids”

=

 The second stage answers questions, which are how many
carbon credits we will get, how much energy we have to
purchase , how much cost we can reduce
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15t Stage Decision Variable

Four possible cases for construction and operational costs
(50-years horizon) of digester related to biosolids capacity

Cost of four possible cases of digester ($/d)

Cost ($/d)
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Uncertain Data Used in Stochastic Model

Solids influent data (inflow for digestion) in dry tons per day (dt/d)
U.S. natural gas electric power prices in dollars per cubic feet (S/cf)
DC Water electricity consumption in kilo watt hour per day (kWh/d)
U.S. electricity prices for PJM area in S per kilo watt hour (S/kWh)
DC water electricity cost in S per kilo watt hour (S/kWh)

Fossil fuel (Diesel) prices in S per gallon (S/gallon)

Biosolids as fertilizer prices in S per ton (S/ton)

Carbon credits in $ per ton CO, equivalent (S/ton CO, e)

Renewable energy credits in S per ton CO, equivalent (S/ton CO, e)
Analyze probability distributions with ARENA software

“We will go over some examples of uncertainty data on the next slides”



Solids Influent 2007-2009 (dt/d)
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Source: Technical memorandum number 1 from Brown and Caldwell, March 2009
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Probability Density Function of Solids Influent for Digester 2007-2009
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U.S. Natural Gas Electric Power Price ($/Mcf)
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U.S. Natural gas prices for electric power generation are 2.86-12.41 $/ Mcf

(2.76-11.97 S/MMBtu), data from 2002-2010
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Probability Density Function of U.S. Natural Gas Price 2002-2010

Distribution Chi Squ KS Squ Err Equation
Erlang 0.21000 >0.15 0.00712 =0.89, Bkxk—1g” /B
k=5 f(x)_ Tforxro
0 otherwise
Gamma 0.21300 >0.15 0.00714 =0.89, B aya-1,""/p _ roe
0=5.01 F0) =" x>0 T@s= | etean
0 4 otherwise
Weibull 0.09170 >0.15 0.00789 B=5.04, .
a=2.41 f —{aﬁ exe=ie™ " forx >0
) otherwise
Normal* 0.00876 >0.15 0.0115 u=6.46, 2 e
— —x—p)=/(20)" . -
o=1.96 flx) = p— ?ne for allreal x
Beta 0.05390 >0.15 0.0108 B=2.64, ) xFl(1—x)e? for0<x<1 .
a=3.88 f) = B(B, a) T X =J tA1(1—t)% tat
0 otherwise 0
Log normal* 0.07810 | >0.15 0.0115 u=4.51, 1 e-(n(-102/20 for 3 5 0
0=2.27 f(x) ={oxyv2m
0 otherwise
Triangular <0.0050 0.081 0.0232 a=260, 2(x—a) R
m=304, £(x) = (m—-a)(b—a) jorasx=m
— T 2‘:b —.X')
b=360 b —m)(b—a) form=x=b
Log Normal PDF
| e

2.86

19

12.41 S/Mcf




Electricity (kWh/d)

DC Water's Electricity Consumption (kWh/d)
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2004-2010

Source : DC Water financial report 2011, data from February 2010 to February 2011
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Probability Density Function of DC Water Electricity Consumption 2000-2010
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Probability Density Function of all Uncertainty Data
. weibull biosolids influent PDF

. log normal U.S. natural gas prices PDF

. triangular DC Water electricity consumption PDF

. log normal DC Water electricity cost PDF

. log normal U.S. electric power prices PDF

. triangular diesel prices PDF
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. triangular carbon credits PDF

. Renewable energy credits $1.89 per ton CO, e
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A Stochastic Model for Biogas Production at the Blue Plains AWTP

* Three objective functions

1. Minimize net carbon dioxide equivalent emission (t/d)
2. Minimize energy purchasing (kWh/d)
3. Maximize DC Water total value (S/d)
s.t. 1tstage constraints relate to digester investment cost (S/d)
2"d stage constraints relate to 6,561 scenarios
- solids influent constraints (dt/d)
- biogas constraints (cf/d)
- biosolids class A constraints (dt/d)
- natural gas consumption constraints (cf/d)
- electricity constraints with recourse (kWh/d)
- carbon dioxide emission constraints (t/d)
- energy consumption constraints (kWh/d)
- value constraints (S/d)

* Using Mixed-integer nonlinear programming (MINLP )and special ordered sets
type 1 (SOS1) variables solve two-stage problem with recourse

* Optimization by General Algebraic Modeling System (GAMS)



Preliminary Results and Discussion

Maximizing DC Water total value

Here-and-Now (RP) result (two-stage stochastic model
include risk and the capability to taking recourse problem)

Expected results by using expected value (EVV), which fixed
the 15t stage variable by using the bigger digester; four trains
of thermal hydrolysis & anaerobic digester and using digester
from RP result to find value of stochastic solution (VSS)

Important of stochastic model for WWTP



Al

Here- and- Now (RP) for Maximizing DC Water Total Value
Objective

First stage picked two trains of thermal hydrolysis & anaerobic
digester up

Expected DC Water operational value $-92,270 per day (cost)
Expected CO, e emissions is about 213.89 tons per day
Expected energy purchasing is about 425,070 kWh per day
Execution time for this model is about 12 hours



How to Increase DC Water Total Value for Biosolids
Management Program?

Cost (constraints in model) Revenue (constraints in model)

Digester (construction and O&M) Sold class A biosolids
Purchased electricity Sold biogas
Delivering biosolids to the field Sold electricity

Carbon or renewable energy credits

Digester cost is the most influent variable for operational cost.
Therefore DC Water should use the smallest digester in order to
reduce digester cost, then generating electricity from biogas.
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Expected DC Water total value ($/d)
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Expected DC Water total value (S/d)

Most Likely Solution (Fixed Four Trains of TH & anaerobic Digester)
under Maximizing DC Water Total Value

Expected energy purchasing (MWh/d)
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Expected DC Water total value ($/d)

Value of stochastic solution under maximizing DC Water total value
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Conclusions

e Stochastic model can help DC Water make a decision
to use digester under real uncertain data and also
reduce operation cost

e Results from maximizing DC Water total value may

not be the best choice for DC Water if we have
environmental concern

* This result supports multi-objective optimization idea
(think both sides between economic and
environment aspects).



Future Work

* Run stochastic model under other two objective
functions, which are minimizing carbon dioxide

equivalent emission and energy purchasing

* What is the best choice for DC Water considering
under all three objective functions together? (Pareto
optimal analysis)

 Add other investment choices of renewable energy
sources
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